首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
To develop new fluorescent and afterglow materials, Mn2+ and Eu3+ co-doped ZnO–GeO2 glasses and glass ceramics were prepared by a sol–gel method and their optical properties were investigated by measuring luminescence, excitation and afterglow spectra, and luminescence quantum yield (QY). Under UV irradiation at 254 nm, some glasses and all of the glass ceramics showed green luminescence peaking at 534 nm due to the 4T1 → 6A1 transition of tetrahedrally coordinated Mn2+ ions. The strongest luminescence was observed in a glass ceramic of 0.1MnO–0.3Eu2O3–25ZnO–75GeO2 heat treated at 900 °C, with QY of 49.8%. All of the green-luminescent glasses and glass ceramics showed green afterglow, and the afterglow lasting for more than 60 min was obtained in a glass ceramic heat treated at 900 °C. It is considered that the Eu3+ ions may behave as electron trapping centers to be associated with the occurrence of the green afterglow due to the Mn2+ ions in the co-doped system.  相似文献   

2.
采用高温熔融法制备Eu3+?Tb3+共掺杂SiO2?B2O3?Na2O?Y2O3?P2O5前驱体玻璃。对前驱体玻璃粉末进行差示扫描量热(DSC)分析,确定玻璃陶瓷样品的热处理温度。前驱体玻璃热处理后,采用X射线衍射(XRD)和扫描电镜(SEM)分析可知前驱体玻璃中有Na3.6Y1.8(PO4)3晶粒析出。利用荧光光谱对玻璃陶瓷样品的发光性能进行表征,同时分析了Tb3+离子的荧光衰减曲线,确定Eu3+、Tb3+离子的发光机理以及能量传递过程。通过对Eu3+?Tb3+共掺杂玻璃陶瓷样品的发射光谱采集并用色坐标软件和色温计算程序,获得玻璃陶瓷样品的色坐标和相关色温。  相似文献   

3.
We report on Tb3+ as efficient sensitizer for red photoemission from Mn2+-centers in ZnO-B2O3-Al2O3-Si2O-Na2O-SrO glasses and corresponding gahnite glass ceramics. In comparison to singly or co-doped glasses, the glass ceramics exhibit significantly increased emission intensity. Structural considerations, ESR, and dynamic luminescence spectroscopy indicate partial incorporation of Mn2+ as well as Tb3+ into the crystalline phase, the former on octahedral Zn2+-sites. Interionic distance and charge transfer probability between both species depend on crystallization conditions. This enables control of the energy transfer process and, hence, tunability of the color of photoemission by simultaneous emission from Tb3+ and Mn2+ centers. Concentration quenching in Mn2+-singly doped materials was found at a critical dopant concentration of about 1.0 mol%. The energy transfer process was studied in detail by dynamic as well as static luminescence spectroscopy. Spectroscopic results suggest the application of the studied materials as single or dual-mode emitting phosphor for luminescent lighting.  相似文献   

4.
Transparent glass ceramics in the system SiO2-B2O3-PbO-CdO-PbF2-CdF2-YbF3-ErF3 showing infrared to visible anti-Stokes (upconversion) luminescence are studied in the present work. The glass compositions have been optimized in order to reduce the melting temperature and, hence, to obtain laboratory scale samples with good optical quality. Erbium-doped nanoscale Pb4Yb3F17 crystals are precipitated in the precursor glasses during annealing at temperatures 30-40 K above Tg. A kinetically self-constrained growth explains the nano sizes of the crystals. Both the Stokes and anti-Stokes luminescence spectra of glasses could be explained with clustering of the Yb3+ and Er3+ ions in fluorine-rich regions. At the annealing temperature these regions act as nucleation precursors. The crystal growth further enhances the local concentration of these ions. Consequently, a series of energy transfer and energy cross relaxation processes occurs between adjacent rare earth ions leading to the observed luminescence spectra of the glass ceramics studied.  相似文献   

5.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

6.
Based on the corrected phase diagrams proper growth conditions for Li2Zn2(MoO4)3 crystals are selected. Large crystals (up to 100 mm), both impurity-free and activated by transition metal ions (Cu, Cr), are grown by the low-gradient Czochralski method. By the EPR method the charge state and structural position of copper and chromium ions are determined. The performed studies of luminescent properties show that for impurity-free crystals luminescence with λ = 388 nm with a two-exponential luminescence decay with τ1 = 2 ns and τ2 = 6 ns is observed at room temperature. At 77 K for both impurity-free crystals and those activated with transition metal ions luminescence with λ = 560 nm and the luminescence lifetime τ = 100 ns is observed, the intensity of luminescence with λ = 560 nm depending on the nature and concentration of transition metal ions. Cation vacancies responsible for the charge compensation of impurity transition metal ions are assumed to be also responsible for low-temperature luminescence.  相似文献   

7.
Controlled nanosized TiO2 particles of 4–10 nm were synthesized by a simple hydrolysis method followed by calcination at different temperatures. These particles were investigated using X-ray diffraction (XRD), Photoacoustic/Fourier transform infrared (PA/FTIR) spectroscopy, Raman spectroscopy and electron spin resonance (ESR) spectroscopy to understand their structural properties. X-ray diffraction studies confirmed the anatase phase of the particles where as the PA/FTIR revealed the bands around 1,500 and 3,300 cm−1 due to –OH bands. ESR spectroscopic investigations carried out from 5 to 300 K indicated the presence of an ESR line at g = 2.00 emerging from radical species. It is significant to note that the intensity of the ESR line decreased as the particle size increased.  相似文献   

8.
The crystals of zinc tungstate (ZTO) are a radiation-hardened matrix and are widely used as scintillators for high energy radiation. Therefore, it is interesting to study the possibility of introducing gadolinium ions into this structure to obtain the lasing properties. In order to activate ZTO crystals by gadolinium ions, 0.5 mol.% of Gd2O3 is added to the load. High-quality large crystals of ZTO are produced. The spectra of optical transmission, luminescence excitation, and luminescence are measured at room temperature. It is shown that the introduction of gadolinium ions does not result in a shift of the main luminescence band of the ZTO crystals. The analysis of the ESR spectra and their modeling enables the calculation of spin-Hamiltonian parameters. It is shown that the observed spectrum depends on the state of Gd3+ ions with S = 7/2 and is well described by the spin-Hamiltonian parameters g x = 1.9835, g y = 1.9685, g z = 1.9688 and D = 644.88 Gs, E = 161.49 Gs. Directions of the principal values of the D tensor are determined; they reflect a strong distortion of the nearest-neighbor oxygen environment.  相似文献   

9.
The photoluminescence properties of xZnO–(100−x)SiO2 (x = 0, 5, 10, 20) containing 1% Eu2O3 prepared by a sol–gel method were systematically investigated. The results indicated that the relative proportion of f–f transitions to charge transfer (CT) absorption decreased with the increase of ZnO concentration. The intensity of 5D07FJ transitions of Eu3+ ions was enhanced with the increase of ZnO content due to local structure changes and decreased quantities of Eu3+ ions clusters. The results of fluorescence line narrow (FLN) spectra indicated that Eu3+ ions occupied one site in SiO2 glass and two sites in ZnO–SiO2 glasses. The second-order crystal field parameters were calculated. B20 and B22 for site 1 increased with excitation energy, while ones hardly changed for site 2.  相似文献   

10.
Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.  相似文献   

11.
The corroding process of six glasses of the Na2O-K2O-CaO-ZrO2-SiO2 system with ZrO2content 0–2.13 mass % by water was observed during static tests at 121°C and pressure of 0.25 MPa in steam sterilizer. Significant increase of Na+ and K+ content in leachates was observed after the addition of ZrO2 into glass. Further increase of the content of ZrO2 in glasses slowed down the rate of Na+ and K+ leaching. The leaching process of SiO2 as well as Na+, K+, and Ca2+ ions was evaluated on the basis of comparison with model leaching processes. Variation of the concentrations of Na+, K+, Ca2+, and SiO2 in leachates with time was described by empirical equation. Observed changes in the initial leaching rates of Na+, K+, Ca2+, and SiO2 can be ascribed to the content of ZrO2 in glasses. The presence of ZrO2 in glasses reduced the overall rate of glass dissolution.  相似文献   

12.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

13.
X-band electron spin resonance (ESR) spectra and fluorescence measurements were performed on Mn-doped Na2ZnP2O7 (NZPO) single crystal synthesized by the Czochralski pulling method and glasses synthesized by the quenching process. For the single crystal, ESR angular dependences were measured in both the zx and xy plans of the NZPO lattice. The fine and hyperfine structure parameters and g-factor values were determined by modelling the experimental spectra. Using the Newman superposition model, the resonating centres in the single crystal and powder (crushed from crystals) samples are assigned to Mn2+ ions substituting for both zinc and sodium. For the glass sample the analysis of the ESR data shows that Mn2+ ions substitute for the Na+ ions. These interpretations are confirmed by the fluorescence measurements with a unique broad red band for the glassy compound and the presence of two emission bands (green and red) in the case of the crystal sample.  相似文献   

14.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

15.
In this paper, we report on the absorption and photoluminescence properties of Tm3+/Dy3+ ions co-doped oxyfluoride germanate glasses for white light emission. The X-ray diffraction (XRD) and differential thermal analysis (DTA) profiles of the host glass have been carried out to confirm its structure and thermal stability. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been evaluated for Tm3+ and Dy3+ ions. A combination of blue, yellow and red emissions has emerged in these glasses, which allows the observation of bright white light when the glasses are excited by the ultraviolet light. The white light luminescence colour could be changed by varying the excitation wavelength. Also, various colours of luminescence, including white light, can be easily tuned by adjusting the concentrations of Tm3+ or Dy3+ ions in the co-doped glasses. Concentration quenching effect was also investigated and possible energy transfer mechanism from Dy3+→Tm3+ ions was explained which is also confirmed by the decay lifetime measurements.  相似文献   

16.
Nanostructured transparent glass-ceramics with composition of 95SiO2–5LaF3 co-doped with 0.3Yb3+, 0.1Ho3+ and 0.1Tm3+ (mol%) were synthesized by thermal treatment of precursor sol–gel derived glasses. X-ray diffraction and transmission electron microscopy analysis point out the precipitation of hexagonal LaF3 nanocrystals with diameter ranging from 11 to 20 nm in these nano-glass-ceramics. White light generation by means of efficient blue, green and red up-conversion luminescence under infrared excitation at 980 nm was observed and involved mechanisms were analyzed. Colour tuneability is achieved by varying the up-conversion emission ratios as a function of pump power.  相似文献   

17.
Transparent Nd3+-doped GeO2 bulk gels and glasses were prepared by the sol-gel method, and their thermal and spectroscopic properties including electron spin resonance (ESR), absorption, fluorescence and upconversion fluorescence spectra were investigated. Absorption spectra characteristic of Nd3+ ions were clearly observed. Under 805 nm laser excitation, the glass showed upconversion fluorescence at 362, 389, 421, 430, 470, 534, 600, and 662 nm at room temperature.  相似文献   

18.
Sol–gel derived glass–ceramics containing CeF3 nanocrystals have been developed for the first time, to the best of our knowledge, by adequate heat treatments of precursor bulk glasses with composition 95SiO2–5CeF3 doped with 0.1 Eu3+ or 0.1 Sm3+ and co-doped with 0.3 Yb3+ and 0.1 Er3+ ions (in mol%). X-Ray Diffraction and High Resolution Transmission Electron Microscopy confirm the precipitation of CeF3 nanocrystals. Moreover, this structural analysis is completed using Eu3+ and Sm3+ as probe ions of the different local environments for rare-earth ions in the nano-structured glass–ceramics. Luminescence measurements led us to discern the final environments for the ions, revealing the partition of a large fraction of these ions into like-crystalline environment of the precipitated CeF3 nanocrystals. Near infrared emission at 1.5 μm was observed after excitation at 980 nm in Yb3+–Er3+ co-doped samples for potential applications in telecommunications.  相似文献   

19.
综合ZnO-Al_2O_3-SiO_2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho~(3+)/Yb~(3+)共掺以ZnAl_2O_4为主晶相的ZnO-Al_2O_3-GeO_2-SiO_2系玻璃陶瓷。因[GeO_4]四面体和[SiO_4]四面体都是玻璃网络形成体,讨论了GeO_2取代SiO_2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO_2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho~(3+)/Yb~(3+)掺杂比对样品上转换发光的影响,最终结果表明当Ho~(3+)/Yb~(3+)掺杂比为1∶11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

20.
89.5(SiO2)10(PbF2)0.5(REF3) silicate glasses have been prepared using room temperature sol–gel processing of Si(OCH2CH3)4, Pb(CH3COO)2·3H2O, RE(CH3COO)3·nH2O and trifluoroacetic acid as a fluorinating agent, where RE stands for rare-earth ions, such as Yb3+, Er3+, Ho3+, Tm3+, or combinations of those ions. On heat treatment of these glasses at about 300–400 °C, the rare-earth doped spherical PbF2 nanocrystals precipitate within SiO2 glass matrix providing transparent nano-structured glassceramics, while the diameter of the nanocrystals can be set in the range from 5 to 25 nm by varying time and temperature of the heat treatment. The structural and photoluminescence studies confirm the incorporation of rare-earth ions into the PbF2 nanocrystals and white and tuneable colour up-conversion luminescence has been detected in case of Yb3+-Er3+-Tm3+ and Yb3+-Ho3+-Tm3+ co-doped nanocrystals by varying dopant ratio and pump power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号