首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper we prove that the following statements about a directed graph G→ are equivalent. (1) G→ is a unit bitolerance digraph, (2) G→ is a proper bitolerance digraph, and (3) the digraph obtained by reversing all arc directions of G→ is an interval catch digraph (also known as a point-core digraph). This result combined with known algorithms for recognizing interval catch digraphs, gives the first known polynomial-time algorithm for recognizing a class of (bi)tolerance digraphs. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

3.
A (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.  相似文献   

4.
一个有向图D称为本原的,如果存在某个正整数k,使得对于D中的任一点x到任一点y都有长为k的途径,这样的正整数k中的最小者称为D的本原指数,作为本原指数概念的推广,R.A.Brualdi和柳柏濂于1990年引入了本原有向图的广义本原指数的新概念,本文给出了对称本原图的集指数的一些性质,并对本原简单图的广义上指数的极图进行了完全刻划。  相似文献   

5.
孟吉翔 《数学研究》1995,28(2):14-17
本文研究点传递有向图与定向留连通度的下界,对达到此下界的Chyley有向图与定向图进行了刻划。  相似文献   

6.
A graph is clique-Helly if any family of mutually intersecting (maximal) cliques has non-empty intersection, and it is hereditary clique-Helly (HCH) if its induced subgraphs are clique-Helly. The clique graph of a graph G is the intersection graph of its cliques, and G is self-clique if it is connected and isomorphic to its clique graph. We show that every HCH graph is an induced subgraph of a self-clique HCH graph, and give a characterization of self-clique HCH graphs in terms of their constructibility starting from certain digraphs with some forbidden subdigraphs. We also specialize this results to involutive HCH graphs, i.e. self-clique HCH graphs whose vertex-clique bipartite graph admits a part-switching involution.  相似文献   

7.
A linear directed forest is a directed graph in which every component is a directed path.The linear arboricity la(D) of a digraph D is the minimum number of linear directed forests in D whose union covers all arcs of D. For every d-regular digraph D, Nakayama and P′eroche conjecture that la(D) = d + 1. In this paper, we consider the linear arboricity for complete symmetric digraphs,regular digraphs with high directed girth and random regular digraphs and we improve some wellknown results. Moreover, we propose a more precise conjecture about the linear arboricity for regular digraphs.  相似文献   

8.
Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known nonreconstructible oriented graphs have eight vertices, it is natural to ask whether there are any larger nonreconstructible graphs. In this article, we continue the investigation of this question. We find that there are exactly 44 nonreconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching‐stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original.  相似文献   

9.
In this paper we continue the study, started by J. Bang-Jensen (1989), of locally semicomplete digraphs, a generalization of tournaments, to which many well-known tournament results extend. The underlying undirected graphs of the locally semicomplete digraphs are precisely the proper circular-arc graphs. We give new results on the structure of locally semicomplete digraphs, as well as several examples of properties of tournaments and semicomplete digraphs that do not extend to the class of locally semicomplete digraphs.  相似文献   

10.
有向图的反能量是指有向图的反邻接矩阵的能量.本文利用有向图的运算构造出了几类有向图,它们中的每一个都满足有向图的反能量等于其底图的能量.部分回答了Adiga等人在文[The skew energy of a digraph,Linear Algebra Appl.,2010,432:1825-1835]中提出的一个公开问题.  相似文献   

11.
12.
A graph G is said to be a set graph if it admits an acyclic orientation which is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set.In this paper, we initiate the study of set graphs. On the one hand, we identify several necessary conditions that every set graph must satisfy. On the other hand, we show that set graphs form a rich class of graphs containing all connected claw-free graphs and all graphs with a Hamiltonian path. In the case of claw-free graphs, we provide a polynomial-time algorithm for finding an extensional acyclic orientation. Inspired by manipulations of hereditarily finite sets, we give simple proofs of two well-known results about claw-free graphs. We give a complete characterization of unicyclic set graphs, and point out two NP-complete problems closely related to the problem of recognizing set graphs. Finally, we argue that these three problems are solvable in linear time on graphs of bounded treewidth.  相似文献   

13.
In this paper we develop new algorithmic machinery for solving hard problems on graphs of bounded rank-width and on digraphs of bounded bi-rank-width in polynomial (XP, to be precise) time. These include, particularly, graph coloring and chromatic polynomial problems, the Hamiltonian path and cc-min-leaf outbranching, the directed cut, and more generally MSOL-partitioning problems on digraphs. Our focus on a formally clean and unified approach for the considered algorithmic problems is in contrast with many previous published XP algorithms running on graphs of bounded clique-width, which mostly used ad hoc techniques and ideas. The new contributions include faster algorithms for computing the chromatic number and the chromatic polynomial on graphs of bounded rank-width, and new algorithms for solving the defective coloring, the min-leaf outbranching, and the directed cut problems.  相似文献   

14.
J. Gómez 《Discrete Mathematics》2009,309(6):1213-2240
There is special interest in the design of large vertex-symmetric graphs and digraphs as models of interconnection networks for implementing parallelism. In these systems, a large number of nodes are connected with relatively few links and short paths between the nodes, and each node may execute the same communication software without modifications.In this paper, a method for obtaining new general families of large vertex-symmetric digraphs is put forward. To be more precise, from a k-reachable vertex-symmetric digraph and another (k+1)-reachable digraph related to the previous one, and using a new special composition of digraphs, new families of vertex-symmetric digraphs with small diameter are presented. With these families we obtain new vertex-symmetric digraphs that improve various values of the table of the largest known vertex-symmetric (Δ,D)-digraphs. The paper also contains the (Δ,D)-table for vertex-symmetric digraphs, for Δ≤13 and D≤12.  相似文献   

15.
Tolerance graphs     
Tolerance graphs arise from the intersection of intervals with varying tolerances in a way that generalizes both interval graphs and permutation graphs. In this paper we prove that every tolerance graph is perfect by demonstrating that its complement is perfectly orderable. We show that a tolerance graph cannot contain a chordless cycle of length greater than or equal to 5 nor the complement of one. We also discuss the subclasses of bounded tolerance graphs, proper tolerance graphs, and unit tolerance graphs and present several possible applications and open questions.  相似文献   

16.
唯一泛圈有向图D是一个定向图,对每一个n,3≤n≤υ,D中有且只有一个长为n的有向圈.用g(υ)表示具有υ个顶点的唯一泛圈有向图最小可能的弧数,用N(υ)表示具有υ个顶点、g(υ)条弧且互不同构的唯一泛圈有向图的个数.确定了当υ=3,4,5,6,7,8时的N(υ).  相似文献   

17.
Limit points of eigenvalues of (di)graphs   总被引:1,自引:0,他引:1  
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of eigenvalues of a set of bipartite digraphs (graphs), where consists of the double covers of the members in D. 4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in D. 5. If M is a limit point of the largest eigenvalues of graphs, then −M is a limit point of the smallest eigenvalues of graphs.  相似文献   

18.
We show that every NP problem is polynomially equivalent to a simple combinatorial problem: the membership problem for a special class of digraphs. These classes are defined by means of shadows and by finitely many forbidden colored subgraphs.Our characterization is motivated by the analysis of syntactical subclasses with the full computational power of NP, which were first studied by Feder and Vardi. Our approach applies to many combinatorial problems and it induces the characterization of coloring problems (CSP) defined by means of shadows. This turns out to be related to dualities. We apply this in the anlysis of local chromatic number. Particularly, we show a surprising richness of coloring problems when restricted to most frequent graph classes. Even for bounded expansion classes (which include bounded degree and proper minor closed classes) holds that the restriction of every class defined as the shadow of finitely many colored subgraphs equals to the restriction of a coloring (CSP) class.  相似文献   

19.
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi-complete digraphs is precisely the class of proper circular-arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.  相似文献   

20.
A digraph is connected-homogeneous if any isomorphism between finite connected induced subdigraphs extends to an automorphism of the digraph. We consider locally-finite connected-homogeneous digraphs with more than one end. In the case that the digraph embeds a triangle we give a complete classification, obtaining a family of tree-like graphs constructed by gluing together directed triangles. In the triangle-free case we show that these digraphs are highly arc-transitive. We give a classification in the two-ended case, showing that all examples arise from a simple construction given by gluing along a directed line copies of some fixed finite directed complete bipartite graph. When the digraph has infinitely many ends we show that the descendants of a vertex form a tree, and the reachability graph (which is one of the basic building blocks of the digraph) is one of: an even cycle, a complete bipartite graph, the complement of a perfect matching, or an infinite semiregular tree. We give examples showing that each of these possibilities is realised as the reachability graph of some connected-homogeneous digraph, and in the process we obtain a new family of highly arc-transitive digraphs without property Z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号