首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.  相似文献   

2.
The influence of a disjoining pressure on the nonlinear oscillations of a thin charged liquid layer on the surface of a spherical solid core is investigated by means of second-order asymptotic calculations. With the initial deformation governed by a kth mode in the spectrum of modes excited via nonlinear interaction, the disjoining pressure causes the frequencies of modes with numbers smaller than k to decrease and the frequencies of modes with numbers larger than k to increase. In the presence of the disjoining pressure, the amplitudes of all nonlinearly excited modes grow compared with the respective amplitudes without the pressure.  相似文献   

3.
表面弹性和分离压耦合作用下的垂直液膜排液过程   总被引:1,自引:0,他引:1       下载免费PDF全文
叶学民  李明兰  张湘珊  李春曦 《物理学报》2018,67(16):164701-164701
针对含不溶性活性剂的垂直液膜排液过程,在考虑表面弹性和分离压耦合作用的基础上,采用润滑理论建立了液膜厚度、表面速度和活性剂浓度的演化方程组,通过数值计算分析了表面弹性和分离压单独作用和耦合作用下的液膜演化特征.结果表明:表面弹性与分离压均对垂直液膜排液过程有显著影响.表面弹性单独作用时,液膜初始厚度随弹性增大,黑膜仅在液膜顶部形成,长度较短且不能稳定存在;分离压单独作用时,活性剂随流体不断汇集在底端,液膜表面无法形成表面张力梯度,不发生逆流现象;当二者耦合作用时,可得到较稳定的液膜,排液前期增加表面弹性可提高液膜的厚度、降低表面速度和促使液体逆流,从而减缓排液过程;后期出现黑膜后,分离压中的静电斥力起主要作用,延缓液膜"老化".  相似文献   

4.
We have found the electron density of states in a thin liquid metallic film for an arbitrary form of the boundary conditions for the wavefunctions of the electrons on the film surface. Assuming a Fermi distribution of the electron energies, we have calculated the thermodynamic characteristics of the film and determined the electronic component of the disjoining pressure. It has been shown that the ambient medium and the state of the surface determine the value and the sign of the electronic component of the disjoining pressure. We have determined the conditions for which a stable state of liquid metallic films is ensured.  相似文献   

5.
叶学民  杨少东  李春曦 《物理学报》2017,66(18):184702-184702
针对含不溶性活性剂的垂直液膜排液过程,基于文献实验结果进一步完善了受活性剂浓度影响的分离压(disjoining pressure)模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了在不同分离压作用下含不溶性活性剂液膜的演化特征.结果表明,垂直液膜的排液过程通常经历两个阶段:首先是厚膜阶段,此时重力对排液过程起主导作用.在随后的薄膜阶段,毛细作用和分离压作用影响逐渐增大,其中分离压将控制液膜的演化历程.分离压对垂直液膜排液过程的影响与活性剂类型及活性剂浓度与静电作用力的关联强度密切相关.当分离压与活性剂浓度正相关时,随斥力关联系数α增大,液膜的排液和变薄过程得以减缓,由此增强了液膜稳定性;当分离压与活性剂浓度负相关时,随斥力关联系数α绝对值增大,液膜排液过程加速,由此加大液膜失稳的风险.  相似文献   

6.
基于微肋管的微沟槽表面薄液膜沸腾理论模型   总被引:2,自引:1,他引:1  
本文提出了基于微肋管的薄液膜蒸发沸腾的输运现象数学模型及其有限差分求解方法。数值模拟结果表明,在蒸发扩张半月形液膜中,非蒸发液膜区域液膜形状主要取决于分子膨胀压力;在薄液膜区域与非蒸发区域的连接处存在着一个强烈的蒸发点,这是膨胀压力和表面张力共同作用的结果;在本征半月形液膜区域压力梯度几乎完全取决于表面张力,因而在该区域内液膜形状可以假定为圆弧形状。  相似文献   

7.
This research is concerned with the problem of heat transfer in a thin liquid layer on a horizontal surface, which evaporates at reduced pressure, when structures shaped as “funnels” and “craters” appear on its surface under the action of vapor recoil force. An approximate model that takes into account the surface tension force, gravity force, vapor recoil force, and disjoining pressure is developed. For the experimentally realized shape of curved surface, in the frames of the model, the distribution of vapor recoil force, temperature, pressure, shear stresses, and local heat fluxes along the interface is found. The density of the heat flux corresponding to appearance of a crater at the place of an array of funnels is estimated. The results are in good agreement with the experimental measurements and the estimates by the Kutateladze formula for the first critical heat flux density.  相似文献   

8.
叶学民  杨少东  李春曦 《物理学报》2017,66(19):194701-194701
针对含不溶性活性剂的垂直液膜排液过程,在考虑分离压作用的前提下,引入随活性剂浓度变化的表面黏度模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了常表面黏度和变表面黏度情形下的液膜演化特征.结果表明:表面黏度是影响液膜排液过程的重要因素,当不考虑表面黏度时,液膜表面呈"流动"模式,反之呈"刚性"模式,且随表面黏度增加,液膜排液速率明显减缓.分离压对"黑膜"的形成至关重要,分离压单独作用时,其形成的"黑膜"长度较短,而只考虑表面黏度时,则不能形成稳定的"黑膜".而在二者协同作用下,液膜中部形成了向下扩展、厚度很薄但非常稳定的"黑膜",且"黑膜"厚度、出现时间均随表面黏度的增大而增加.当考虑活性剂浓度对表面黏度的影响时,表面速度受此影响显著;在形成"黑膜"长度及出现时间方面与相应常表面黏度的情形基本类似,但其"黑膜"厚度小于相应常表面黏度,故在液膜排液过程中更容易发生失稳.  相似文献   

9.
We use the functional integral technique of Edwards and Lenard to solve the statistical mechanics of a one-dimensional Coulomb gas with boundary interactions leading to surface charging. The theory examined is a one-dimensional model for a soap film. Finite-size effects and the phenomenon of charge regulation are studied. We also discuss the disjoining pressure for such a film. Even in the absence of boundary potentials we find that the presence of a surface affects the physics in finite systems. In general we find that in the presence of a boundary potential the long-distance disjoining pressure is positive, but may become negative at closer interplane separations. This is in accordance with the attractive forces seen at close separations in colloidal and soap film experiments and with three dimensional calculations beyond mean field. Finally, our exact results are compared with the predictions of the corresponding Poisson–Boltzmann theory which is often used in the context of colloidal and thin liquid film systems.  相似文献   

10.
Using a solvable model, the two-dimensional two-component plasma, we study a Coulomb gas confined in a disk and in an annulus with boundaries that can adsorb some of the negative particles of the system. We obtain explicit analytic expressions for the grand potential, the pressure and the density profiles of the system. By studying the behavior of the disjoining pressure we find that without the adsorbing boundaries the system is naturally unstable, while with attractive boundaries the system is stable because of a positive contribution from the surface tension to the disjoining pressure. The results for the density profiles show the formation of a positive layer near the boundary that screens the adsorbed negative particles, a typical behavior in charged systems. We also compute the adsorbed charge on the boundary and show that it satisfies a certain number of relations, in particular an electro-neutrality sum rule.  相似文献   

11.
Nanodroplets residing near wedges or edges of solid substrates exhibit a disjoining pressure induced dynamics. Our nanoscale hydrodynamic calculations reveal that nonvolatile droplets are attracted or repelled from edges or wedges depending on details of the corresponding laterally varying disjoining pressure generated, e.g., by a possible surface coating.  相似文献   

12.
The complete wetting of an uncoated silicon wafer covered with a native oxide layer by saturated vapour of carbon tetrachloride was studied by using the x-ray reflectivity-technique. Differential heating of the substrate relative to a liquid reservoir was used to examine the disjoining pressure as a function of film thickness. The measurements were done at the temperaturesT=308K andT=318K of the reservoir. The observed film thicknesses varied between 26Å and 345Å depending on the temperature difference. A model for explaining the measured film thickness as a function of the temperature difference in terms of van der Waals forces is presented. It is based on the non-retarded interaction and includes terms of higher order in the film thickness. Microscopic constants like the Hamaker constant were determined and compared with reported values.  相似文献   

13.
We study large scale surface deformations of a liquid film unstable due to the Marangoni effect caused by external heating on a smooth and solid substrate. The work is based on the thin film equation which can be derived from the basic hydrodynamic equations. To prevent rupture, a repelling disjoining pressure is included which accounts for the stabilization of a thin precursor film and so prevents the occurrence of completely dry regions. Linear stability analysis, nonlinear stationary solutions, as well as three-dimensional time dependent numerical solutions for horizontal and inclined substrates reveal a rich scenario of possible structures for several realistic fluid parameters.  相似文献   

14.
毛细管内薄液膜轮廓和传热特性研究   总被引:2,自引:0,他引:2  
本文认为毛细管的相变传热机理为液膜的导热和表面蒸发;表面蒸发受蒸汽温度、汽液界面的温度以及汽液压力差的共同控制。汽液流动机理为流动受脱离压力梯度、毛细力梯度支配。汽液相互作用机理为存在由于蒸发导致的动量转移切应力和由于汽液流速不同产生的摩擦切应力。提出的物理模型中较为全面地考虑了毛细管内传热、汽液流动及其相互作用。对毛细管半径和传热功率对薄液膜轮廓和传热特性影响程度的计算结果表明,随着毛细管半径的减小、传热功率的增大,蒸发界面区的长度会有所减小,这是针对微小空间得出的不同于常规情况的结论。  相似文献   

15.
A mathematical model of regular wavy microrelief formation on a semiconductor surface subjected to an obliquely incident medium-energy ion be am is stated and analyzed. Taking into account the influence of fluctuation forces (the molecular component of the disjoining pressure) and of the ion-beam-transferred electric charge is shown to bring together model predictions and observations.  相似文献   

16.
X-ray studies of dipalmitoylphosphatidylcholine (DPPC) single layers on the surface of a liquid provide detailed information on the interaction of metal particles with a single layer upon an increase in the surface pressure up to the collapse. Two complementary X-ray methods are used: grazing incidence diffraction and the X-ray standing waves method. The experimental results obtained for a single layer formed on a colloidal solution of magnetite nanoparticles reveal that the increase in the surface pressure is accompanied by an increase in the concentration of nanoparticles near the surface. In a series of experiments where metal particles of submicron size are sputtered onto a DPPC single layer, a sharp decrease in the intensity of the fluorescence yield from metal atoms is observed while the single layer is compressed. These data suggest that metal particles deposited onto the surface of a single layer were extruded into the aqueous subphase.  相似文献   

17.
Research on nanofluids has progressed rapidly since their enhanced thermal conductivities were identified about a decade ago. For boiling heat transfer with nanofluids, however, many contradictory results have been reported, which cannot be explained by conventional theories developed for pure fluids. Recent progress in colloidal science shows that the presence of nanoparticles could enhance the spreading and wettability of base fluids through a long-range structural disjoining pressure. This article explores theoretically the influence of structural disjoining pressure to the nucleate boiling heat transfer through a four-zoned microlayer evaporation model. The influence of particle size, particle concentration, and heat flux on the structural disjoining pressure and the interfacial shape of the microlayer are investigated. The calculated equilibrium interfacial shape shows that the meniscus is displaced toward the vapor phase in the presence of nanoparticles, an implication of enhanced wettability. Such an improved wettability affects the number of active nucleate sites and bubble dynamics significantly, which could be one of the important parameters that is responsible for the controversy of boiling heat transfer with nanofluids reported in the literature.  相似文献   

18.
The disjoining pressure of charged parallel interfaces confining an electrolyte solution is to a large extent determined by the screening clouds of the surface charges. We evaluate the pressure in terms of the number density sigma of discrete charges and film thickness d and find, at sigmad(2) approximately 1, a crossover from the well-known law P approximately sigma(2) to a linear behavior P approximately sigma. For the latter case, each surface charge results in strongly inhomogeneous pressure profiles at both interfaces.  相似文献   

19.
In this paper, steady thermocapillary flow in a thin horizontal layer of a viscous incompressible liquid with a free surface is considered. An axially symmetric steady problem with a localized thermal action on a horizontal liquid layer with a deformable free surface is solved in a thin-layer approximation. In addition to the thermocapillary effect, the model takes into account the capillary pressure caused by the free surface variable curvature and the convective mechanism of heat transfer in the liquid. Analytical expressions for the velocity vector components as functions of the liquid layer thickness and surface temperature are obtained. The free surface and velocity profiles caused by various kinds of heating are calculated. The influence of convective heat transfer on the flow pattern is analyzed.  相似文献   

20.
The evaporation of single droplets and sprays into gaseous atmosphere and the evaporation of sessile liquid droplets on solid substrates are here considered. We argue that if thermodynamics is augmented with Derjaguin’s (disjoining/conjoining) pressure to handle phenomena in a vicinity of the three-phase contact line, problems like the singularity of the evaporation flux and of the viscous stress at the three-phase contact line of a sessile droplet are ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号