首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   

2.
Radium concentration and radon exhalation rate have been measured in soil samples collected from some areas belonging to upper Siwaliks of Kala Amb, Nahan and Morni Hills of Haryana and Himachal Pradesh states, India using LR-115 type II plastic track detectors. Uranium concentration has also been determined in these soil samples using fission track registration technique. Radium concentration has been found to vary from 5.30 to 31.71 Bq.kg−1, whereas uranium concentration varies from 33.21 to 76.26 Bq.kg−1. The radon exhalation rate in these samples varies from 216.87 to 1298.00 mBq.m−2hr−1 (6.15 to 36.80 mBq.kg−1.hr−1). Most of the samples have uranium concentration above the worldwide average concentration of 35 Bq.kg−1. A good correlation (R 2 = 0.76) has been observed between uranium concentration and radon exhalation rate in soil. The values of uranium, radium and radon exhalation rate in soil are compared with that from the adjoining areas of Punjab.  相似文献   

3.
Indoor radon has been recognized as one of the health hazards for mankind. Building materials constitute the second most important source of radon in dwellings. The common building materials used in the construction of dwellings are studied for radon exhalation rate. The ‘Can’ technique using LR-115 type-II solid-state nuclear track detector has been used for these measurements. The radon exhalation rate in these samples varies from 4.75 m Bq m−2 h−1 (0.14 m Bq kg−1 h−1) for limestone to 506.76 m Bq m−2 h−1 (15.24 m Bq kg−1 h−1) for soil.  相似文献   

4.
The activity concentrations of the natural radionuclides namely 238Ra, 232Th and 40K are measured for soil samples collected from different locations of Faridkot and Mansa districts of Punjab. HPGe detector, based on high-resolution gamma spectrometry system is used for the measurement of activity concentration. The range of activity concentrations of 226Ra, 232Th and 40K in the soil from the studied areas varies from 21.42 Bq kg−1 to 40.23 Bq kg−1, 61.01 Bq kg−1 to 142.34 Bq kg−1 and 227.11 Bq kg−1 to 357.13 Bq kg−1 with overall mean values of 27.17 Bq kg−1, 95.22 Bq kg−1 and 312.76 Bq kg−1, respectively. Radium equivalent activities are calculated for the analyzed samples to assess the radiation hazards arising due to the use of these soil samples in the construction of dwellings. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 9.87 and 18.55, 38.01 and 88.68 and 9.40 and 14.79 nGy h−1, respectively. The total absorbed dose in the study area ranges from 61.10 nGy h−1 to 112.86 nGy h−1 with an average value of 84.80 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.68. Since these values are lower than unity, according to the Radiation Protection 112 (European Commission, 1999) report, soil from these regions is safe and can be used as construction material without posing any significant radiological threat to population. The corresponding average annual effective dose for indoor and outdoor measured in the study area are 0.42 mSv and 0.10 mSv respectively.   相似文献   

5.
Chhatrapur beach placer deposit, situated in a part of the eastern coast of Orissa, is a newly discovered high natural background radiation area (HBRA) in India. The sand samples containing heavy minerals, were collected from Chhatrapur region by the grab sampling method at an interval of ∼1 Km. Radon exhalation rates were measured by “Sealed Can Technique” using LR-115 type type II in the sand samples containing heavy minerals collected from the beach. Radon activity is found to vary from 1177.1 to 4551.4 Bq m-3 whereas the radon exhalation rate varies from 423.2 to 1636.3 mBq m−2h−1 with an average value of 763.9 mBq m−2h−1. Effective dose equivalent in sand samples estimated from exhalation rate varies from 49.9 to 193.0 μSv y−1 with an average value of 90.1 μSv y−1. From the activity concentration of 238U, 232Th and 40K computed radium equivalent is found to vary from 864.0 to 11471.5 Bq kg−1 with an average value of 3729.0 Bq kg−1. External hazard index, Hex range from 2.3 to 31.0 with a mean value of 10.1, which is quite high. This value supports the conclusion based on high mean absorbed gamma dose rate in air due to the naturally occurring radionuclides as 1627.5 nGy h−1. A positive correlation has been found between U concentration and radon exhalation rate in the sand samples. The use of sand as construction material may pose a radiation risk to ambient environment.   相似文献   

6.
《Radiation measurements》2009,44(3):306-310
A procedure is described in which soil gas is utilized as an alternative to the 226Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m3, which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive (226Ra) sources.  相似文献   

7.
CR-39 and LR-115 plastic nuclear track detectors in the can-technique have been employed in the field measurements of radon exhalation, Ra-226 and U-238 content in dry-soil air at numerous regions in Sudan (the Blue and White Nile and Mogran regions). Measurements gave an average radon exhalation from the soil to the atmosphere and Ra-226 content of (23.4 ± 2.60) kBq · m?2 and (123 ± 13.65) Bq · kg?1 respectively. A polyethylene permeable membrane cover was used to eliminate the contribution of thoron activity inside the can. Assuming a radioactive equilibrium between the U-series, the average U-238 content in the soil was found to be (9.92 ± 1.01) ppm. This survey may be used for uranium prospection in soil.  相似文献   

8.
In the present study measurement of radon and its progeny concentration has been undertaken in the buildings constructed in the surroundings of National Hydroelectric Power Corporation (NHPC). LR-115 Type-II solid state nuclear track detectors fixed on a thick flat card were exposed in bare mode. Track etch technique has been used to estimate the radon concentration in the rooms of some buildings. Annual effective dose has been calculated from the radon concentration to carry out the assessment of the variability of expected radon exposure of the population due to radon and its progeny. The radon levels in these dwellings vary from 9±4 to 472±28 Bq m−3 with an average value of 158±14.9 Bq m−3 whereas annual effective dose varies from 0.1±0.04 to 7±0.4 mSv y−1 with an average value of 2.3±0.2 mSv y−1. These values are below the recommended action levels.  相似文献   

9.
10.
This study was aimed at providing the baseline data of terrestrial gamma dose rates and natural radioactivity to assess the corresponding health risk in the ambient environment of the Pahang State. Terrestrial gamma radiation (TGR) from 640 locations was measured with the mean value found to be 176?±?5 nGy h?1. Ninety-eight soil samples were analysed using a high-purity germanium detector (HPGe), and the mean concentrations of the radionuclides 226Ra, 232Th and 40K are 110?±?3, 151?±?5 and 542?±?51 Bq kg?1, respectively.226Ra and 232Th concentrations were found to be three times the world average, while that of 40K is quite higher than the world average value. The acid-intrusive geological formation has the highest mean concentrations for 226Ra (215?±?6 Bq kg?1), 232Th (384?±?12 Bq kg?1) and 40K (1564?±?153 Bq kg?1). The radium equivalent activities (Req) and the external hazard index (Hex) for the various soil types were also calculated. Some of the soil types were found to have values exceeding the internationally recommended levels of 370 Bq kg?1 and the unity value, respectively.  相似文献   

11.
M ABDELZAHER 《Pramana》2011,77(4):749-757
Inhalation of radon has been recognized as a health hazard. In the present work radon concentration was measured, in the atmosphere of the archaeological place, namely Catacomb of Kom El-Shuqafa, in Alexandria, Egypt, which is open to the public, using time-integrated passive radon dosimeters containing LR-115 solid-state nuclear track detector. The measurements were performed throughout winter and summer. Seasonal variation of radon concentration, with the maximum in summer ranging from 243 to 574 Bq m − 3 and minimum in winter ranging from 64 to 255 Bq m − 3 was observed. Because of the variations of the catacomb ventilation system, the equilibrium factor between radon and its progeny ranges from 0.14 to 0.48. The tour guides are exposed to an average estimated annual effective dose ranging from 0.21 to 0.52 mSv y − 1 and the visitors from 0.88 to 2.28 μSv y − 1. The effective doses the catacomb workers are exposed to ranged from 0.20 mSv y − 1 in winter to 4.65 mSv y − 1 in summer which exceeds the lower bound of the recommended level (3–10 mSv y − 1) (ICRP, 1993).  相似文献   

12.
ABSTRACT

Radon, thoron and associated progeny measurements have been carried out in 71 dwellings of Douala city, Cameroon. The radon–thoron discriminative detectors (RADUET) were used to estimate the radon and thoron concentration, while thoron progeny monitors measured equilibrium equivalent thoron concentration (EETC). Radon, thoron and thoron progeny concentrations vary from 31?±?1 to 436?±?12 Bq?m–3, 4?±?7 to 246?±?5 Bq?m–3, and 1.5?±?0.9 to 13.1?±?9.4 Bq?m–3. The mean value of the equilibrium factor for thoron is estimated at 0.11?±?0.16. The annual effective dose due to exposure to indoor radon and progeny ranges from 0.6 to 9?mSv?a–1 with an average value of 2.6?±?0.1?mSv?a–1. The effective dose due to the exposure to thoron and progeny vary from 0.3 to 2.9?mSv?a–1 with an average value of 1.0?±?0.4?mSv?a–1. The contribution of thoron and its progeny to the total inhalation dose ranges from 7 to 60?% with an average value of 26?%; thus their contributions should not be neglected in the inhalation dose assessment.  相似文献   

13.
The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure between the radon source and the surrounding air, and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon emanates to the surfaces mainly by diffusion processes from the point of origin following α-decay of 226Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. In the present study radon diffusion through some building materials viz. coarse sand and stone dust of different grain size has been carried out using LR-115 type II solid-state nuclear track detectors (SSNTDs). The radon diffusion coefficients and diffusion lengths through these building construction materials have been calculated. The effect of grain size on radon diffusion through these building materials shows the decrease in radon diffusion with decrease in grain size.  相似文献   

14.
There is a well-known radon spa Ni?ka Banja in south-east of Serbia. In Ni?ka Banja spa there is a medical complex and radon is used for therapeutic purposes for many different diseases. This paper presents elevated radon levels in the Ni?ka Banja spa. Indoor radon and radon in water activity concentration measurements in thermal pools and therapy rooms are presented. There are also results from gamma spectrometry measurements of soil, rock and therapy mud. A special attention is paid to the medical staff exposure to radon around thermal pools. The annual effective doses from radon for staff working around the thermal pools in Ni?ka Banja spa are very high comparing to the maximum recommendation level. The maximal radon concentration of (22.90 ± 0.57) kBq m?3 was measured in the basement of the hotel-dispensary “Radon”. This hotel is settled on “bigar” rock – travertine, which has high content of 226Ra.  相似文献   

15.
An extensive study was conducted to determine the activity concentrations of natural and artificial radionuclides 226Ra, 232Th, 40K, and 137Cs in soil samples of each governate of Jordan. A total of 370 samples have been measured using a high-purity germanium detector. The activity concentration for 226Ra, 232Th, 40K, and 137Cs has mean values of 42?±?3, 23?±?3, 309?±?21, and 3.7?±?0.9 Bq kg–1, respectively. The highest mean activity concentration for 226Ra was found to be 138?±?4 Bq kg–1 in the Alkarak governate. In the Ajloun and Jarash governates, the highest mean activity concentration was 35?±?3 Bq kg–1 for 232Th, and 14.2?±?1.9 Bq kg–1 for 137Cs, respectively. Geological influence on the activity concentrations was investigated using the one-way analysis of variance (ANOVA) and independent samples. The ANOVA results indicate that there are strong significant differences between the activity concentrations of 232Th, 40K, and 137Cs based on geological formations the radionuclides occur. The main contribution to gamma dose rate was due to 226Ra activity concentration. Radium equivalent and external hazard index are associated with a mean value of 98 Bq kg–1, and 0.266, respectively.  相似文献   

16.
222Rn concentrations were measured in the bubble gases, spring waters, soil gases and in ambient air around the thermal springs at Bakreswar in West Bengal, India. This group of springs lies within a geothermal zone having exceptionally high heat flow about 230 mW/m2, resembling young oceanic ridges. The spring gas has a high radon activity (~885 kBq/m3) and is rich in helium (~1.4 vol. %) with appreciably large flow rate. The measured radon exhalation rates in the soils of the spring area show extensive variations from 831 to 4550/mBqm2 h while 222Rn concentrations in the different spring waters vary from 3.18 to 46.9 kBq/m3. Surface air at a radius of 40 m around the springs, within which is situated the Bakreswar temple complex and a group of dwellings, has radon concentration between 450 and 500 Bq/m3. In the present paper we assess the radon activity background in and around the spring area due to the different contributing sources and its possible effect on visiting pilgrims and the people who reside close to the springs.  相似文献   

17.
Previously calibrated passive detectors (CR-39) and an active radon device (Radon Monitor RM3) were used to study seasonal variation of radon-222 concentration levels inside and outside specific locations in Jordan. The study sites were located in an area that used to be an old phosphate mine. We found that the maximum value of radon concentration in air inside the dwellings, as measured by the passive dosimeters, was 1532.9 Bq/m3 during the winter season, and the minimum one was 46.3 Bq/m3 during fall season. While the highest and lowest readings of the active monitor were 892 and 4 Bq/m3 during fall and summer seasons, respectively. The radon concentration in soil ranges from 0.2 kBq/m3 in spring to 37.8 kBq/m3 in fall.  相似文献   

18.
In the present study soil samples were collected from the region around a National Thermal Power Corporation (NTPC) at Dadri (U.P.), India. Radon activity and radon exhalation rates were measured by using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities are found to vary from 177.5 ± 23.1 to 583.4 ± 4.9 Bq m−3 with an average value of 330.5 ± 30.4 Bq m−3. Surface exhalation rates in these samples vary from 63.9 ± 8.3 to 210.2 ± 15.1 mBq m−2 h−1 with an average value of 119.1 ± 11.1 mBq m−2 h−1, whereas mass exhalation rates vary from 2.5 ± 0.3 to 8.1 ± 0.6 mBq kg−1 h−1 with an average of 4.6 ± 0.4 mBq kg−1 h−1.Activity concentrations of naturally occurring radionuclides (226Ra, 232Th and 40K) were also measured in these soil samples using high resolution γ–ray spectroscopic system. Activity concentrations of 226Ra, 232Th, and 40K vary from 32.2 ± 6.0 to120.9 ± 4.5 Bq kg−1, 19.3 ± 0.9 to 44.6 ± 1.5 Bq kg−1 and 195.4 ± 2.8 to 505.4 ± 6.3 Bq kg−1 with overall mean values of 70.0 ± 8.9 Bq kg−1, 34.8 ± 1.2 Bq kg−1 and 436.1 ± 5.6 Bq kg−1 respectively. From the activity concentrations of 226Ra, 232Th and 40K, radium equivalent activity (Raeq) and the external hazard index (Hex) were calculated and found to vary from 73.4 to 214.7 Bq kg−1 and from 0.2 to 0.6 respectively.  相似文献   

19.
The spatial variation of soil gas radon values were correlated with the seismogenic faults and earthquakes in the Tangshan area (north China). Radon concentrations were measured at 756 sites in an area about 2500 km2 from April to May 2010. The background and anomaly threshold values calculated were 4730.4 Bq/m3 and 8294.1 Bq/m3, respectively. Radon concentrations highlight a decreasing gradient from NE to SW in the area. Higher values mostly distributed in the NE sector of the Tangshan fault and the Luanxian fault where the Tangshan (Ms 7.8), and Luanxian (MS 7.1) earthquakes occurred in 1976 and 17 earthquakes with MS = 3.0 occurred in this area since 2005. Radon values illustrated a close relation with the shallow fault trace and earthquake activity in the area. The active fault zones and the associated fractures formed by the larger earthquakes, act as paths for radon migration.  相似文献   

20.
Radon concentration levels in water and soil gas from 36 locations pertaining to some areas of Malwa region of Punjab have been measured on an in situ basis using a continuous active radon detector (AlphaGuard, Model - PQ 2000 PRO, Genitron instruments, Germany). Exhalation rate measurements have also been carried out at these places, using a closed-circuit technique. The radon concentrations in soil and water varied from 1.9 to 16.4?kBq?m(-3) and 5.01 to 11.6?kBq?m(-3), respectively. The exhalation rate (E (Rn)) ranged between 7.48 and 35.88?mBq?m(-2)?s(-1) with an average value of 18.17?mBq?m(-2)?s(-1). Annual dose rates have been calculated for water radon concentrations. The minimum to maximum values of dose rates were found to be 13.42-31.08?μSv?y(-1). The recorded values of radon concentration in water are within the safe limit of 11?Bq?l(-1) recommended by the US Environment Protection Agency [National Research Council, Risk Assessment of Radon in Drinking Water (Academy Press, Washington, DC, USA, 1999)]. All measurements were made in similar climatic and environmental conditions to ensure minimal variations in meteorological parameters. An intermediate correlation coefficient (0.5) was observed between radon exhalation rates and soil gas values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号