首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang H  Jin W 《Electrophoresis》2004,25(3):480-486
A method for monitoring amino acids in single erythrocytes is described. For intracellular derivatization, reagent fluorescein isothiocyanate (FITC) was introduced into living cells by electroporation. For an 8 microm erythrocyte, the analytes were diluted by a factor of only 1.6. After completion of the derivatization reaction, a single cell was injected into the separation capillary tip and lysed there. The derivatized amino acids were separated by capillary electrophoresis, followed by laser-induced fluorescence detection. Nine amino acids were quantitatively determined, with amounts of amino acids ranging from 3.8-32 amol/single cell.  相似文献   

2.
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column is first partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides. This is followed by plugs of buffer, antibiotic and two noninteracting standards, and acetic and/or succinic anhydride (and buffer in the case of ACE). The order of the reagent plugs containing the antibiotic and anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in the relative migration time ratio (RMTR) of the new glycopeptide relative to the standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant K(b). The techniques described here can be used to assess how the derivatization of drugs alters their affinities for target molecules.  相似文献   

3.
The on-line coupling of sequential injection analysis (SIA) and capillary electrophoresis (CE) via an in-line injection valve is presented. The SIA system is used for automated derivatization of amino acids and peptides. Dichlorotriazinylaminofluorescein serves as the derivatization agent, thus enabling sensitive laser-induced fluorescence detection of the derivatized analytes. The SIA procedure includes the following steps: (a) introduction of reagent and sample zones in a holding coil, (b) sample and reagent mixing in a reaction coil, (c) stop-flow step for increase of the reaction time, and (d) delivery of derivatized sample into the loop of the micro-valve interface. A small portion of the analyte zone is introduced electrokinetically in the separation capillary via the valve interface and CE analysis is performed. Factors affecting the CE separation, such as pH, the borate and sodium dodecyl sulphate concentration of the background electrolyte have been optimized. The derivatization conditions have been studied to obtain a high reaction yield in a relative short time. The transfer of a part of the reaction plug into the loop of the valve interface has been optimized. Using des-Tyr(1)-[Met]-enkephalinamide as test compound, it is demonstrated that after automated derivatization, on-line electrophoretic analysis could be achieved. Glycine has been selected as the internal standard in order to correct for variations in reaction time and filling of the injection loop. For the enkephalin, good reproducibility (RSD<4.5% calculated by the ratio of the peak areas) and linearity (0.5-5 microg mL(-1), R(2)>or=0.994) are obtained with a detection limit of 30 ng mL(-1) (S/N=3).  相似文献   

4.
Q Weng  W Jin 《Electrophoresis》2001,22(13):2797-2803
A method is described for the direct identification and quantification of amino acids in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection after on-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA) and CN-. In this method, individual macrophages and then the lysing/ derivatizing buffer are injected into the front end of the separation capillary by electromigration with the aid of an inverted microscope. The front end of the separation capillary is used as a chamber to lyse the macrophage and derivatize its contents, which minimizes dilution of amino acids of a single macrophage during derivatization. Six amino acids (serine, alanine, taurine, glycine, glutamic acid, and aspartic acid) in single mouse peritoneal macrophages have been identified. Quantitation has been accomplished through the use of calibration curves, where the concentration ratios of these standard amino acids are similar to the concentration ratios of amino acids in macrophages. Cellular levels of the amino acids in these cells range from 0.27 +/- 0.20 fmol/ cell for alanine to 6.4 +/- 4.6 fmol/cell for taurine.  相似文献   

5.
Fan L  Cheng Y  Chen H  Liu L  Chen X  Hu Z 《Electrophoresis》2004,25(18-19):3163-3167
A rapid and selective method is described for the separation of D-aspartic acid (D-Asp) using a continuous on-line derivatization system coupled to capillary electrophoresis (CE). D-Asp was derivatized using o-phthaldialdehyde/N-acetyl-L-cysteine (OPA/NAC). By on-line derivatization, amino acid enantiomers were automatically and reproducibly converted to the UV-absorbing diastereomer derivatives which were separated by capillary zone electrophoresis (CZE) in the presence of 10 mmol/L beta-cyclodextrin (beta-CD). Under the investigated separation conditions, D-Asp is resolved from L-aspartic acid (L-Asp) and other amino acids in a standard mixture of amino acids. The separation could be achieved within 4 min and the sample throughput rate can reach up to 16 h(-1). The repeatability (defined as relative standard deviation, RSD) was 3.21%, 3.58% with peak area evaluation and 3.72%, 4.03% with peak height evaluation for L-Asp and D-Asp.  相似文献   

6.
A novel method of intracellular derivatization was developed. In this method, the derivatization reagents [naphthalene-2,3-dicarboxaldehyde (NDA) and CN-] were introduced into living cells by electroporation for the derivatization reaction. After completion of derivatization reaction in cells, a single cell was drawn into the capillary tip by electroosmotic flow. Then the lysing solution was introduced into the capillary by diffusion. Once the individual cell was lysed, the derivatized amino acids in the individual cell were separated by capillary zone electrophoresis and detected by end-column amperometric detection at the outlet of the capillary. This method of intracellular NDA derivatization confined the analytes and the derivatization reagents to the volume of a single cell expanded. For an 8-microm erythrocyte, the contents were diluted by a factor of only ca. 1.6. The method was used to determination of amino acids in single erythrocytes. Six amino acids were identified and quantified.  相似文献   

7.
Amino acids in individual human lymphocytes were determined by capillary zone electrophoresis with electrochemical detection (ED) at a carbon fiber bundle electrode after on-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA) and CN. In order to inject cells easily, a cell injector was designed. In this method, a single human lymphocyte and then the lysing/derivatizing buffer were electrokinetically injected into the front end of the separation capillary as a chamber to lyse the lymphocyte and derivatize amino acids in the cell. Four amino acids (serine (Ser), alanine (Ala), taurine (Tau), and glycine (Gly)) in single human lymphocytes have been identified. Quantitation has been accomplished through the use of calibration curves.  相似文献   

8.
Neuropeptides are heavily posttranslationally modified (PTM) gene products that are often characterized by a variety of mass spectrometric approaches. Recently, the occurrence of amino acids in the D-form has been documented in several neuropeptides. As this modification has no associated mass shift, this particular PTM is difficult to evaluate using mass spectrometry (MS) alone. Here we demonstrate several approaches using capillary electrophoresis (CE) with absorbance and laser-induced fluorescence (LIF) for the separation of native and derivatized molluscan peptides containing D-amino acids. The combination of peptide derivatization followed by CE/LIF is well suited for single cell measurements because of its ability to characterize the peptides in such small samples. In order to verify this approach, the D-Trp-containing peptide NdWFa (NH2-Asn-D-Trp-Phe-CONH2), present in individual neurons from the marine mollusk Aplysia californica, has been characterized. The mass spectra show that NdWFa and/or NWFa are present in specific neurons; CE/LIF analysis of these cells demonstrates that NdWFa is the dominant form of the peptide.  相似文献   

9.
Binding constants of the glycopeptide antibiotics teicoplanin (Teic), ristocetin (Rist), and vancomycin (Van), and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column ligand and receptor synthesis coupled to affinity capillary electrophoresis (ACE) or partial filling ACE (PFACE). In the first technique, 9-fluorenylmethoxycarbonyl (Fmoc)-amino acid-D-Ala-D-Ala species are first synthesized using on-column techniques. The initial sample plug contains a D-Ala-D-Ala terminus peptide and two non-interacting standards. Plugs two and three contain solutions of Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester and buffer, respectively. Upon electrophoresis, the initial D-Ala-D-Ala peptide reacts with the Fmoc-amino acid NHS ester yielding the Fmoc-amino acid D-Ala-D-Ala peptide. Continued electrophoresis results in the overlap of the glycopeptide in the running buffer and the plug of Fmoc-amino acid-D-Ala-D-Ala peptide and non-interacting markers. Subsequent analysis of the change in the electrophoretic mobility (mu) or relative migration time ratio (RMTR) of the peptide relative to the non-interacting standards, as a function of the concentration of the antibiotic, yields a value for the binding constant. In the second technique, derivatives of the glycopeptides Teic and Rist are first synthesized on-column before analysis by ACE or PFACE. After the column has been partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides, a plug of buffer followed by two separate plugs of reagents are injected. The order of the reagent plugs containing the antibiotic and two non-interacting standards and the anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in RMTR of the new glycopeptide relative to the non-interacting standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant.  相似文献   

10.
Free amino acids have been derivatized on-capillary with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) and analyzed using a laboratory-made capillary electrophoresis apparatus with laser-induced fluorescence detection. Several parameters that control on-capillary derivatization of amino acids, including pH, mixing time, reaction time, concentration of the derivatization reagents (potassium cyanide and FQ) and solvent of FQ, as well as the temperature of mixing and reaction were optimized. Repeatabilities better than 1.8% for migration time and 7.8% for peak height were obtained. Assay detection limits for the different amino acids ranged from 23 nM for glycine to 50 nM for lysine and glutamic acid. The methods developed were applied to the analysis of several amino acids in pharmaceutical preparations and plasma samples. Results showed a good agreement with those obtained using an amino acid autoanalyzer for the same samples.  相似文献   

11.
Brinz D  Holzgrabe U 《Electrophoresis》2008,29(17):3605-3611
A simple capillary zone electrophoresis method has been developed for the separation of polyethylene glycols (PEGs) consisting of differing amounts of polymers with different monomer numbers up to an average molecular mass of 1500. To provide both charge and detectability, the analytes were derivatized with phthalic anhydride according to a conventional method and a newly developed microwave-assisted method. While obtaining nearly equal amounts of single and double esterificated PEGs with the conventional method, the fraction of single derivatized PEGs is considerably reduced by microwave-assisted reaction. In order to compare the capillary zone electrophoresis results, an HPLC method with evaporative light scattering detection has been established. This method was successfully applied to the analysis of underivatized PEG 400, 1000 and 1500.  相似文献   

12.
The development of selective derivatization for the determination of carboxylic acids, amino acids and peptides in aqueous solutions is described as a preliminary study for the determination of these compounds in biological materials. The derivatization reactions are completed before the liquid chromatographic separation and laser-induced fluorescence detection for which a continuous-wave argon-ion gas laser is used in the ultraviolet or visble mode. Carboxylic acid groups arre derivatized with 9-hydroxymethylathracene and primary amino groups are derivatized with fluorescein isothiocyanate. Detection limits, in aqueous solutions, for the carboxylic acid derivatives are ca. 190 fg (ultraviolet mode). In the visible mode, the detection limits are ca. 1 fg for the primary amino derivatives of amino acids and peptides. In al the chromatographic analyses, the derivatization mixtures are injected onto a standard reversed-phase or reversed- phase ion-pair system and conventional flow cells are used without expensive photon counting or optical systems.  相似文献   

13.
Microchip capillary electrophoresis/electrochemistry   总被引:8,自引:0,他引:8  
Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.  相似文献   

14.
The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.  相似文献   

15.
This paper examines the potentiality of in-capillary derivatization for improving the sensitivity of the spectrophotometric detection of amino acids in capillary zone electrophoresis. 1,2-Naphthoquinone-4-sulfonate was selected as the labeling agent of amino acids. The underivatized sample and the reagent solution segments are injected by pressure into the capillary prior to applying the running voltage. The corresponding derivatization reaction occurs inside the capillary once the potential is applied, as it induces mixing of the sample with the reagent. Several introduction modes consisting of tandem or sandwich configuration have been evaluated. These techniques result in a straightforward and automated way of carrying out a derivatization. Furthermore, in-capillary procedures may become much more attractive than conventional pre-capillary derivatization in terms of sensitivity and reproducibility. The optimum operation mode found consists of a sandwich system where the sample is injected in between two reagent segments. The method was applied to the determination of amino acids in feed samples. Results show a good concordance with those given by a standard amino acid analyzer.  相似文献   

16.
Single drop microextraction (SDME) can be in-line coupled with capillary electrophoresis by attaching a drop to the tip of a capillary. With a 2-layer drop comprised of an aqueous basic acceptor phase covered with a thin organic layer, acidic analytes in an aqueous acidic donor phase can be extracted into the organic layer and then back-extracted into the acceptor phase. However, preconcentration of amino acids and peptides by SDME is difficult since their zwitterionic properties prevent them from being partitioned in the middle organic phase. When amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), amino acids without a charged side chain were converted to carboxylic acids. In the acidic donor phase, those NBD-amino acids were predominantly neutral and they were successfully concentrated into the basic acceptor phase. In the meantime, amino acids with a charged side chain after NBD-F derivatization were not concentrated via SDME. With this selective SDME, we were able to extract acidic and neutral amino acids obtaining several hundred-fold enrichments within 5 min at 25 °C, while leaving basic amino acids—Arg, Lys, and His—in the acidic donor phase. Furthermore, detection sensitivity was enhanced by employing laser-induced fluorescence detection. We then applied this technique to the selective concentration of peptides.  相似文献   

17.
The most methods used to determine amino acids developed in the past were via pre- or post-column derivatization of the analytes to produce a fluorescent reagent in order for detection of them by measuring the fluorescence. The detection of underivatized amino acids is also accomplished by indirect methods. In this work, micellar electrokinetic capillary chromatography(MECC) based on sodium dodecyl sulphate (SDS) was developed for the direct determination of the four amino acids, histidine,tyrosine, tryptophan and phenylalanine, by using UV-detector. The apparatus used was Model 3850 capillary electrophoresis system (ISCO,USA) with a 60cm 0.05mm I.D.fused-silica capillary,where was a detection window at a position 35 cm from the injection end of the capillary. And the detection performed by on-column measurement of ultraviolet absorption at 210nm. SP4600 integrator was used for the data acquisition and processing.  相似文献   

18.
Chiral separation of amino acids and peptides by capillary electrophoresis   总被引:3,自引:0,他引:3  
Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.  相似文献   

19.
Separation of amino acid enantiomers and peptide isomers has been made possible through the use of Marfey's reagent and high-performance capillary electrophoresis (HPCE). Samples of amino acids and peptides were first derivatized with Marfey's reagent and subsequently analyzed by HPCE. Different modes of separation were investigated including free solution and micellar electrokinetic chromatography. The use of micellar electrokinetic chromatography in combination with L- and D-Marfey's reagent offered unequivocal means to confirm the presence of D-amino acid in an unknown sample. This method is also particularly useful for the analysis of peptide isomers.  相似文献   

20.
A derivatization system coupled to capillary electrophoresis for the determination of amino acids using 1,2-naphthoquinone-4-sulfonate as a labeling agent is described. In this system, amino acids are derivatized on-line in a three-channel flow manifold for sample, reagent and buffer solutions. The reaction takes place in a PTFE coil heated at 80 degrees C. The resulting solution, which contains the amino acid derivatives, is introduced into the electrophoretic system by means of an appropriate interface. Subsequently, amino acid derivatives are separated at 25 kV using a 40 mM sodium tetraborate aqueous solution with 30% (v/v) isopropanol solution as a running buffer. The electropherograms are monitored spectrophotometrically at 230 nm. The method has been applied to the determination of amino acids in feed samples and pharmaceutical preparations. A good concordance of the predicted values with those given by a standard amino acid analyzer is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号