首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Humans are exposed to a large number of carcinogens which may react at various sites throughout the body, including the N-7-, N2-, and O6-positions of guanine. The effects of this are various but may result in depurination and eventual excretion of the modified base in the urine. Various alkylguanine derivatives with substituents at the N-7-, N2- and O6-positions were synthesized and daughter-ion spectra obtained. Apart from the methyl and dialkylguanines all other spectra exhibited an ion at m/z 151 using electron ionization (EI) and m/z 152 using fast-atom bombardment (FAB). The daughter-ion spectra of dialkylguanines contained an ion at m/z 150 (EI). Hence, scans of m/z 150 and 151 using EI, to detect all parent-ions from which they are formed (parent-ion scans) should indicate the presence of alkyl and dialkylguanine bases in a complex biological matrix such as human urine. Parent-ion scans of m/z 150 and 151 (EI) of a partially purified human urine sample exhibited numerous ions, including a prominent ion at m/z 179. A daughter-ion spectrum of m/z 179 revealed fragment ions that suggested the presence of N2-dimethylguanine and an ethylated guanine. Any confusion due to the presence of daughter ions from different alkylguanines in the same spectrum can be resolved by the fact that an ethylated guanine has four exchangeable protons, whereas N2-dimethylguanine has only three. By performing hydrogen/deuterium exchange it is possible to distinguish the N2-dimethylguanine from ethylated guanine isomers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A series of iron(III) complexes 1-4 of the tripodal tetradentate ligands N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L1), N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxy- propyl)amine H(L2), N,N-bis(pyrid-2-ylmethyl)-N-ethoxyethanolamine H(L3), and N-((pyrid-2-ylmethyl)(1-methylimidazol-2-ylmethyl))-N-(2-hydroxyethyl)amine H(L4), have been isolated, characterized and studied as functional models for intradiol-cleaving catechol dioxygenases. In the X-ray crystal structure of [Fe(L1)Cl(2)] 1, the tertiary amine nitrogen and two pyridine nitrogen atoms of H(L1) are coordinated meridionally to iron(III) and the deprotonated ethanolate oxygen is coordinated axially. In contrast, [Fe(HL3)Cl(3)] 3 contains the tertiary amine nitrogen and two pyridine nitrogen atoms coordinated facially to iron(III) with the ligand ethoxyethanol moiety remaining uncoordinated. The X-ray structure of the bis(μ-alkoxo) dimer [{Fe(L5)Cl}(2)](ClO(4))(2)5, where HL is the tetradentate N(3)O donor ligand N,N-bis(1-methylimidazol-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L5), contains the ethanolate oxygen donors coordinated to iron(III). Interestingly, the [Fe(HL)(DBC)](+) and [Fe(HL3)(HDBC)X] adducts, generated by adding ~1 equivalent of piperidine to solutions containing equimolar quantities of iron(III) complexes 1-5 and H(2)DBC (3,5-di-tert-butylcatechol), display two DBC(2-)→ iron(III) LMCT bands (λ(max): 1, 577, 905; 2, 575,915; 3, 586, 920; 4, 563, 870; 5, 557, 856 nm; Δλ(max), 299-340 nm); however, the bands are blue-shifted (λ(max): 1, 443, 700; 2, 425, 702; 3, 424, 684; 4, 431, 687; 5, 434, 685 nm; Δλ(max), 251-277 nm) on adding 1 more equivalent of piperidine to form the adducts [Fe(L)(DBC)] and [Fe(HL3)(HDBC)X]. Electronic spectral and pH-metric titration studies in methanol disclose that the ligand in [Fe(HL)(DBC)](+) is protonated. The [Fe(L)(DBC)] adducts of iron(III) complexes of bis(pyridyl)-based ligands (1,2) afford higher amounts of intradiol-cleavage products, whereas those of mono/bis(imidazole)-based ligands (4,5) yield mainly the auto-oxidation product benzoquinone. It is remarkable that the adducts [Fe(HL)(DBC)](+)/[Fe(HL3)(DBC)X] exhibit higher rates of oxygenation affording larger amounts of intradiol-cleavage products and lower amounts of benzoquinone.  相似文献   

3.
Azirine reacts with 2-vinylpyridine in the presence of metallic sodium with the formation of N-[-(pyridin-2-yl)ethyl]azirine. The reaction of the latter with HBr and H2S leads to N-(-bromoethyl)-and N-(-mercaptoethyl)-N-[-(pyridin-2-yl)ethyl]amines. Carbon oxysulfide and carbon disulfide react at room temperature with N-[-(pyridin-2-yl)ethyl]azirine to form copolymers in a ratio of 11. Carbon dioxide forms only N-[-(pyridin-2-yl)ethyl]-oxazolinone under similar conditions.For Communication IV, see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1216–1218, September, 1973.  相似文献   

4.
Positive ion mass spectral fragmentation of new N-carbamoyl/N-thiocarbamoyl derivatives of narcotine and compounds closely related to it are reported and discussed. The techniques used include electron impact (EI), fast-atom bombardment (FAB), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Prominent peaks in the mass spectra of these compounds appear to involve C-C bond cleavage beta to the amine nitrogen with loss of the 4,5-dimethoxy(1H)isobenzofuranone moiety from their molecular ions, along with another prominent peak at m/z 382. No molecular ion peaks of these compounds were recorded in EI, whereas intense [M + H]+ ion peaks were observed in FAB and ESI spectra. MALDI also yielded [M + H]+ ion peaks in good agreement with FAB and ESI studies.  相似文献   

5.
The formation of linoleic acid radical species under the oxidative conditions of the Fenton reaction (using hydrogen peroxide and Fe (II)) was monitored by FAB-MS and ES-MS using the spin trap 5,5-dimethyl-1-pyrrolidine-N-oxide, DMPO. Both the FAB and ES mass spectra were very similar and showed the presence of ions corresponding to carbon- and oxygen centered spin adducts (DMPO/L*, DMPO/LO*, and DMPO/LOO*). Cyclic structures, formed between the DMPO oxygen and the neighboring carbon of the fatty acid, were also observed. Electrospray tandem mass spectrometry of these ions was performed to confirm the proposed structure of these adducts. All MS/MS spectra showed an ion at m/z 114, correspondent to the [DMPO + H]+, and a fragment ion due to loss of DMPO (loss of 113 Da), confirming that they are DMPO adducts. ES-MS/MS spectra of alkoxyl radical adducts (DMPO/LO*) showed an additional ion at m/z 130 [DMPO - O + H]+, while ES MS/MS of peroxyl radical adducts (DMPO/LOO*) showed a fragment ion at m/z 146 [DMPO - OO + H]+, confirming both structures. Other fragment ions were observed, such as alkyl acylium radical ions, formed by cleavage of the alkyl chain after loss of water and the DMPO molecule. The identification of fragment ions observed in the MS/MS spectra of the different DMPO adducts suggests the occurrence of structural isomers containing the DMPO moiety both at C9 and C13. The use of ES tandem mass spectrometry, associated with spin trapping experiments, has been shown to be a valuable tool for the structural characterization of carbon and oxygen-centered spin adducts of lipid radicals.  相似文献   

6.
At the alkylation of monoethanolamine vinyl ether with 2-chloro-5-(chloromethyl)thiophene in ethyl alcohol (60-70°C) a product of disubstitution and transvinylation, viz. N,N-bis(5-chloro-2-thienylmethyl)-N-(2-hydroxyethyl)ammonium chloride is formed. The analogous reaction in the absence of solvent proceeds with the formation of N-(5-chloro-2-thienylmethyl)-N-(2-vinyloxyethyl)amine.  相似文献   

7.
超支化聚(酯-酰胺)的合成与流变改性研究   总被引:10,自引:0,他引:10  
近十几年来 ,超支化聚合物因具有独特的结构和特殊的性能而受到普遍关注[1] .超支化聚合物具有低的熔体粘度 ,与线性聚合物共混可显著改善其加工流变性 ,具有商业应用潜力 .关于超支化聚合物在流变改性方面的应用已有文献报道[2~ 6] ,但目前文献中的大多数单体合成较繁琐且收率不高 ,这已成为制约超支化聚合物应用的瓶颈 ,如何以简便的途径合成超支化聚合物已成为当前研究的重点 .本文设计一条新的合成路线 ,即以 1 ,2 ,4 苯三酸酐、乙醇胺及乙酸酐为原料 ,以高的收率得到了单体N ( 2 乙酰氧基乙基 ) N ( 2′ ,4′ 二羧基苯甲酰基 )胺 (…  相似文献   

8.
An analytical strategy using fast atom bombardment (FAB) ionization and tandem mass spectrometry has been developed to determine the molecular weight and major fragment ions, and to provide limited structural characterization of low picomole levels of carcinogen-nucleoside adducts. This strategy consists of three main components: (1) the sensitivity for analysis by FAB combined with mass spectrometry is increased via chemical derivatization; (2) the nucleoside adducts are selectively detected by using constant neutral loss scans; and (3) structurally characteristic fragments are obtained by using daughter ion scans. Trimethylsilyl derivatized arylamine-nucleoside adducts have been detected at levels as low as a few picomoles by using this approach. After experimental determination of the mass of the BH 2 + fragment ion, daughter ion spectra have been used to probe the structure specificity associated with collision-activated decomposition of this fragment. With model C-8 substituted arylamine adducts [N-(deoxyguanosin-8-yl)-4-aminobiphenyl, N-(deoxyadenosin--yl)-4-aminobiphenyl, and N-(deoxyguanosin-8-yl)-2-aminofluorene], nucleoside-specific and carcinogen-specific fragmentation have been observed in daughter ion spectra.  相似文献   

9.
A liquid chromatography/electrospray tandem mass spectrometry (LC/ESI-MS/MS) method for the determination in urine samples of two ethanol metabolites, ethyl glucuronide (EtG) and ethyl sulfate (EtS), was developed and validated. Pentadeuterated EtG was used as internal standard for both EtG and EtS. In addition to the surviving ions, two MS/MS reactions were monitored for each analyte, with the deprotonated molecule as precursor ion: m/z 221 --> 75, m/z 221 --> 85 (EtG), and m/z 125 --> 97, m/z 125 --> 80 (EtS). Sample pretreatment, though very simple and rapid (1:50 water dilution and centrifugation of 50 muL of urine), was found to contain the occurrence of matrix effects. The method was accurate and precise over the linear dynamic range (0.05-10 mg/L). The analytes were stable in frozen urine for at least 1 month. The assay was applied to several authentic urine samples from social drinkers and to alcoholic beverages.  相似文献   

10.
Zinc complexes of three new amide-appended ligands have been prepared and isolated. These complexes, [(dpppa)Zn](ClO4)2 (4(ClO4)2; dpppa = N-((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(bdppa)Zn](ClO4)2 (6(ClO4)2; bdppa = N,N-bis((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)amine), and [(epppa)Zn](ClO4)2 (8(ClO4)2; epppa = N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been characterized by X-ray crystallography (4(ClO4)2 and 8(ClO4)2), 1H and 13C NMR, IR, and elemental analysis. Treatment of 4(ClO4)2 or 8(ClO4)2 with 1 equiv of Me4NOH.5H2O in methanol-acetonitrile (5:3) results in amide methanolysis, as determined by the recovery of primary amine-appended forms of the chelate ligand following removal of the zinc ion. These reactions proceed via the initial formation of a deprotonated amide intermediate ([(dpppa-)Zn]ClO4 (5) and [(epppa-)Zn]ClO4 (9)) which in each case has been isolated and characterized (1H and 13C NMR, IR, elemental analysis). Treatment of 6(ClO4)2 with Me4NOH.5H2O in methanol-acetonitrile results in the formation of a deprotonated amide complex, [(bdppa-)Zn]ClO4 (7), which was isolated and characterized. This complex does not undergo amide methanolysis after prolonged heating in a methanol-acetonitrile mixture. Kinetic studies and construction of Eyring plots for the amide methanolysis reactions of 4(ClO4)2 and 8(ClO4)2 yielded thermodynamic parameters that provide a rationale for the relative rates of the amide methanolysis reactions. Overall, we propose that the mechanistic pathway for these amide methanolysis reactions involves reaction of the deprotonated amide complex with methanol to produce a zinc methoxide species, the reactivity of which depends, at least in part, on the steric hindrance imparted by the supporting chelate ligand. Amide methanolysis involving a zinc complex supported by a N2S2 donor chelate ligand (3(ClO4)2) is more complicated, as in addition to the formation of a deprotonated amide intermediate free chelate ligand is present in the reaction mixture.  相似文献   

11.
Collision-induced dissociation (CID) of 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine was investigated using sequential tandem mass spectrometry. These adducts represent biomarkers of DNA damage linked to phenolic radicals and were investigated to gain insight into the effects of chemical structure of a C-8 modification on fragmentation pathways of modified 2'-deoxyguanosine (dG). CID in MS(2) of the deprotonated molecules of both the isomers generated the same product ion having the same m/z values. CID in MS(3) of the product ion at m/z 242 and CID in MS(4) experiments carried out on the selected product ions at m/z 225 and m/z 218 afford distinct fragmentation patterns. The conformational properties of isomeric product ions from CID showed that the ortho-isomers possess the unique ability to tautomerize through an intramolecular proton transfer between the phenolic OH group and the imine nitrogen (N7). Tautomerization of ortho-isomers to their keto-tautomers led to differences in their system of conjugated double bonds compared with either their enol-tautomer or the para-isomer. The charge redistribution through the N-7 site on the imidazole ring is a critical step in guanosine adduct fragmentation which is disrupted by the formation of the keto-tautomer. For this reason, different reaction pathways are observed for 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine. We present herein the dissociation and the gas-phase ion-molecule reactions for highly conjugated ions involved in the CID ion chemistry of the investigated adducts. These will be useful for those using tandem mass spectrometry for structural elucidation of C-8 modified dG adducts. This study demonstrates that the modification at the C-8 site of dG has the potential to significantly alter the reactivity of adducts. We also show the ability of tandem mass spectrometry to completely differentiate between the isomeric dG adducts investigated.  相似文献   

12.
Tamoxifen has been shown to be a potent liver carcinogen in rats, and generates covalent DNA adducts. On-line high performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been used to further study the metabolites of tamoxifen formed by rat liver microsomes in the presence of NADPH with a view to identifying potential reactive metabolites which may be responsible for the formation of DNA adducts, and liver carcinogenesis. A metabolite has been detected with a protonated molecule at m/z 773. The mass of this compound is consistent with a dimer of hydroxylated tamoxifen (m/z 388). Analysis of 4-hydroxytamoxifen incubated with a rat liver microsomal preparation showed the formation of a similar metabolite with an apparent MH+ ion at m/z 773, believed to be a dimer of 4-hydroxytamoxifen formed by a free radical reaction. The retention time for this metabolite from 4-hydroxytamoxifen is identical to that of the tamoxifen metabolite, suggesting that these two compounds are the same. The levels of the dimer were higher when 4-hydroxytamoxifen was used as substrate and, in addition, two isomers were detected. It is proposed that tamoxifen was first converted to arene oxides which react with DNA or to 4-hydroxytamoxifen, either directly or via 3,4-epoxytamoxifen, which then undergoes activation via a free radical reaction to give reactive intermediates which can then react with DNA and protein, or with themselves, to give the dimers (m/z 773).  相似文献   

13.
Poly[1,2,(4)-phenylenevinyleneanisylaminium] 1 was synthesized by one-pot palladium-catalyzed polycondensation of N-(3-bromo-4-vinylphenyl)-N-(4-methoxyphenyl)-N-(4-vinylphenyl)amine 3 and subsequent oxidation with the thianthrene cation radical tetrafluoroborate: compound 1 three-directionally satisfies a non-Kekulé-type pi-conjugation and the ferromagnetic connectivity of the unpaired electrons of the triarylaminium cationic radical. The average molecular weight of the polymer was 4700-5900 (degree of polymerization = 11-14), which gave a single molecular-based and globular-shaped image of ca. 15 nm diameter by atomic and magnetic force microscopies under ambient conditions. The aminium polyradical 1 with a spin concentration (determined by iodometry) of 0.65 spin/unit displayed an average S (spin quantum number) value of 7/2 even at 70 degrees C according to NMR and magnetization measurements.  相似文献   

14.
The product ions of the BH(2)(+) ions formed by the glycosidic cleavage of N-(deoxyguanosin-O(6)-yl)-2-methylaniline, 4-(deoxyguanosin-8-yl)-2-methylaniline, and N-(deoxyguanosin-1-yl)-2-methylaniline have been studied using matrix-assisted laser desorption/ionization (MALDI) and post-source decay (PSD) to identify fragment ions and pathways that may be used to differentiate their structures. All three isomers may be distinguished based on their PSD product ion spectra using only femtomole quantities of sample. N-(Deoxyguanosin-O(6)-yl)-2-methylaniline produces product ions at m/z 107 and 134 that are diagnostic for 2-methylaniline attachment to the O(6) position of guanine. The BH(2)(+) ion from 4-(deoxyguanosin-8-yl)-2-methylaniline yields a product ion formed by the consecutive losses of 17 and 42 u neutral fragments that may be regarded as specific for guanine-arylamine adducts that possess two primary amine groups. The BH(2)(+) ion from 4-(deoxyguanosin-8-yl)-2-methylaniline yields no product ions that correlate with specificity for guanine N1 substitution. However, the product ion abundance ratio of the protonated arylamine to that of the ammonia loss ion may be used to differentiate an adduct formed by N1 substitution from other arylamine adducts of guanine studied thus far.  相似文献   

15.
Three cyclitol derivatives were isolated from the marine sponge Sarcotragus sp. by reversed-phase high-performance liquid chromatography and analyzed by fast-atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with FAB tandem mass spectrometry (FAB-MS/MS). FAB-MS spectra produced a significant abundance of the sodium adducts [M+Na]+ and [M+2Na-H]+ from a mixture of m-NBA and NaI. In addition, trifluoroacetylation of the cyclitol derivatives was used for confirmation of the presence of the cyclitol ring. High abundance [M-5H+5CF3CO+Na]+ ions were observed in the FAB-MS spectra of the trifluoroacetyl-cyclitol derivatives. Collision-induced dissociation (CID) of the [M+Na]+ ions produced diverse product ions via a series of dissociative processes. Charge-remote fragmentation (CRF) patterns of [M+Na]+ ions were very useful for the identification of product ions which are characteristic for the cyclitol ring and long hydrocarbon chains substituted at the glycerol backbone. Moreover, the CID-MS/MS spectra of the [M+Na]+ ions yielded characteristic product ions at m/z 53, 83, 113, 155 and 171 for the cyclitol moiety, and at m/z 213, 229 and 245 for the glycerol backbone attached to the cyclitol ring.  相似文献   

16.
Compound 1 [N-[1(R)-[(1,2-dihydro-1-methylsulfonylspiro[3H-indole-3,4'-piperidin]-1'-yl)carbonyl]-2-(phenylmethyloxy)ethyl]-2-amino-2-methylpropanamide](MW 528) is an orally-active growth hormone secretagogue (GHS). As part of a continual effort to analyze the ESI/MS and MSn data of novel drugs, the ESI/MS and MS/MS data of protonated 1 (m/z 529) are analyzed and reported here. The analyses reveal that under low-energy collision-induced dissociation (CID) in an ion trap or a quadrupole collision cell, protonated 1 undergoes a gas-phase rearrangement to form protonated 3 (m/z 357) which competes with the y- and b-type product ions during the amide bond cleavages of protonated 1. It is proposed that when the b-type ion is formed by cleavage of the piperidine amide bond, piperidine (a neutral species) and the b-ion (a cation) form an ion-neutral complex. In this complex, piperidine functions as a nucleophile to attack the benzylic carbon of the b-ion, and the protonated ether group in the b-ion acts as a leaving group, which results in the migration of the benzylic group to the piperidine amine to form protonated 3. Protonated 2 (an analog of 1) was studied under the same experimental conditions. The results show that protonated 2 undergoes a similar rearrangement to form protonated 3. While this rearrangement is a relatively minor fragmentation process for protonated 1, it is a predominant process for protonated 2. This phenomenon is explained in terms of the proposed ion-neutral-complex mechanism.  相似文献   

17.
A conventional fast-atom bombardment (FAB) ion source was used to achieve matrix-assisted laser desorption (MALD) in a high-mass, double-focusing, magnetic mass spectrometer. The pulsed ion signals generated by irradiation of a mixture of sample and matrix (2,5-dihydroxybenzoic acid) with either a XeF excimer laser (353 nm) or a nitrogen laser (337 nm) were recorded with a focal-plane detector. A resolution (full-width at half maximum) of 4500 was achieved at m/z 1347.7 (the peptide substance P), 2500 for CsI cluster ions at m/z 10,005.7, and 1250 for the isotope cluster of the small protein cytochrome c (horse) [M+H]+ = m/z 12,360 (average). Sensitivity is demonstrated with 11 fmol of substance P. A survey scan is taken to locate the m/z of the sample molecular ion. The segment that contains the sample can then be integrated for a longer time to produce a better signal-to-noise ratio. In addition to higher sensitivity and lower matrix interference, the advantage of MALD over FAB is the former's lower susceptibility to the presence of salts, and competition between hydrophobic and hydrophilic components of a mixture. This feature is demonstrated by the complete MALD spectrum of a crude partial tryptic digest of sperm-whale apomyoglobin, containing 24 peptides, representing the entire sequence of this protein.  相似文献   

18.
Calf thymus DNA was treated with melphalan, a nitrogen mustard, and the formation of melphalan cross-linked DNA adducts was investigated. These cross-linked adducts could not be detected either in the enzymatically or in the thermally generated DNA hydrolysates. However, a search for DNA cross-linked adducts in the hydrolysates obtained under acidic conditions revealed the presence of different types of cross-links, mainly containing an adenine moiety. These results are very important because they show that the detection of cross-links is dependent on the hydrolytic procedure used and that these cross-linked adducts are formed under totally different reaction conditions from those in in vivo situations. This can explain the very low abundance or even the absence of cross-linked adducts in nitrogen mustard treated animals. The generally accepted theory that the anti-cancer activity of bifunctional mustards such as melphalan is due to cross-linking of DNA strands remains therefore from our point of view questionable.  相似文献   

19.
Gestrinone was studied by HPLC for screening and by GC/MS for confirmation. Three unknown peaks were found by HPLC which are probably the metabolites of gestrinone, and conjugated gestrinone in dosed human urine. The metabolites and gestrinone were excreted as the conjugated forms. The total amounts of metabolite 1 and conjugated gestrinone, recovered after 48 h, were 0.20 and 0.32 mg, respectively. When metabolite 1 was tested by LC/MS and LC/MS/MS, the parent ion was m/z 327, [MH](+), and fragment ions were seen at m/z 309 [MH - H(2)O](+), 291 [MH - 2H(2)O](+), 283, 263 and 239. The TMS-enol-TMS ether derivative of gestrinone has three peaks in the GC/MS chromatogram formed by tautomerism. The reproducibility of the derivatization method was stable and recoveries were over 87% when spiked into blank urine.  相似文献   

20.
Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution. This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational changes are difficult to separate from the effects of changing solvent on the ionization process. A novel strategy is presented enabling comparison of ESI mass spectra of a folded and partially unfolded protein of the same amino acid sequence subjected to the same experimental protocols and conditions. The N-terminal domain of the Escherichia coli DnaB protein was cyclized by in vivo formation of an amide bond between its N- and C-termini. The properties of this stabilized protein were compared with its linear counterpart. When the linear form was unfolded by decreasing pH, a charge envelope at lower m/z appeared consistent with the presence of a population of unfolded protein. This was observed in both positive-ion and negative-ion ESI mass spectra. Under the same conditions, this low m/z envelope was not present in the ESI mass spectrum of the stable cyclized form. The effects of changing the desolvation temperature in the ionization source of the Q-TOF mass spectrometer were also investigated. Increasing the desolvation temperature had little effect on positive-ion ESI mass spectra, but in negative-ion spectra, a charge envelope at lower m/z appeared, consistent with an increase in the abundance of unfolded protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号