首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tuning of selectivity by changing the flow rate has been investigated in HPLC: two columns with different retention characteristics were coupled in series via a T-piece and the relative retention of components chromatographed on the system were changed by varying the individual flow rates in the coupled columns. The flow rate alteration was performed by adding a second flow after the first column. The flow rate ratio necessary for optimum resolution can be easily calculated on the basis of the capacity factors measured on the individual columns. The performance of this method for adjusting selectivity has been demonstrated by using different column combinations to separate several mixtures containing chlorophenols, nitroaromatic compounds, and aromatic hydrocarbons.  相似文献   

2.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

3.
The essential oils extracted from three kinds of herbs were separated by a 5% phenylmethyl silicone (DB‐5MS) bonded phase fused‐silica capillary column and identified by MS. Seventy‐four of the compounds identified were selected as origin data, and their chemical structure and gas chromatographic retention times (RT) were performed to build a quantitative structure–retention relationship model by genetic algorithm and multiple linear regressions analysis. The predictive ability of the model was verified by internal validation (leave‐one‐out, fivefold, cross‐validation and Y‐scrambling). As for external validation, the model was also applied to predict the gas chromatographic RT of the 14 volatile compounds not used for model development from essential oil of Radix angelicae sinensis. The applicability domain was checked by the leverage approach to verify prediction reliability. The results obtained using several validations indicated that the best quantitative structure–retention relationship model was robust and satisfactory, could provide a feasible and effective tool for predicting the gas chromatographic RT of volatile compounds and could be also applied to help in identifying the compound with the same gas chromatographic RT.  相似文献   

4.
A live retention database for compound identification in isothermal and any step temperature programmed capillary gas chromatography has been developed. The database utilizes the Kovats retention indices of compounds on a given stationary phase and the retention time of n-alkanes measured at isothermal conditions on the column to be used, together with the programming parameters. Identification is performed by search operation that compares the calculated results with the retention values of unknown peaks. Cross-reference of the search results of different operating conditions is performed automatically by the database in order to increase the reliability of the identification. The error of the database conversion is ≤± 0.5 index unit, or ≤± 1% on retention time. This paper describes the principle and the structure of the database in detail. The experimental results for different calsses of compounds tested at divers operating conditions will be presented in Part Ⅱ.  相似文献   

5.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

6.
For the separation of peptides with gradient-elution liquid chromatography a poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA) monolithic capillary column was prepared and tested. The conditional peak capacity was used as a metric for the performance of this column, which was compared with a capillary column packed with C18-modified silica particles. The retention of the peptides was found to be smaller on the BMA column than on the particulate C18 column. To obtain the same retention in isocratic elution an approximately 15% (v/v) lower acetonitrile concentration had to be used in the mobile phase. The retention window in gradient elution was correspondingly smaller with the BMA column. The relation between peak width and retention under gradient conditions was studied in detail. It was found that in shallow gradients, with gradient times of 30min and more, the peak widths of the least retained compounds are strongly increased with the BMA column. This was attributed to the fact that these compounds migrate and elute with an unfavorable high retention factor. More retained compounds are eluted later in the gradient, but with a lower effective retention factor. With shallow gradients the peak capacity of the BMA column ( approximately 90) was clearly lower than that of a conventional packed column ( approximately 150). On the other hand, with steep gradients, when components elute with a low effective retention factor, the performance of the BMA column is relatively good. With a gradient time of 15min similar peak widths and thus similar peak capacities ( approximately 75) were found for the packed and the monolithic column. Two strategies were investigated to obtain higher peak capacities with methacrylate monolithic columns. The use of lauryl methacrylate (LMA) instead of butyl methacrylate (BMA) gave an increase in retention and narrower peaks for early eluting peptides. The peak capacity of the LMA column was approximately 125 in a 60min gradient. Another approach was to use a longer BMA column which resulted in a peak capacity of approximately 135 could be obtained in 60min.  相似文献   

7.
Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution. IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron‐containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide‐selective columns, IonPac AS11‐HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics. Among them 4‐chlorobenzene sulfonic acid, 3,5‐dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π‐π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron‐containing substituents. So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion‐exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its polymer is completely free of any π electron‐containing substituents. Finally, the effect of temperature on the retention behavior in AS20 column was studied and it was showed that the retention of nine compounds exhibited endothermic behavior.  相似文献   

8.
SPE is an effective tool for concentrating preparative fractions isolated from a complex sample. To guarantee high efficiency and recovery of concentration, the concentration conditions could be optimized by predicting the breakthrough volume (V(B)). In this study, a method of predicting V(B )of unknown compounds in preparative fractions at any isocratic mobile phase composition with the analytical retention parameters a and c is described. The a and c values and the relationship between half peak width (W(1/2)) and retention time of a model analyte were measured using the analytical elution mode on an SPE column, and the V(B )and retention volume (V(R)) predicted with the a and c values were validated with breakthrough experiments. However, it is impossible to measure the a and c values of multiple compounds in a complex system directly on an SPE column with a low number of theoretical plates. The correlation of the a and c values between the SPE and analytical columns was developed so that the analytical data could be transferred to the SPE column. With the calculated a and c values, we could optimize the concentration conditions on the basis of the predicted V(B )and the volume of the preparative fraction.  相似文献   

9.
The solvation parameter model is used to characterize the retention properties of a poly(methylphenylsiloxane) column Rxi-50 over the temperature range 60-240 degrees C. The smooth variation of the system constants with temperature affords a general picture of how the relative importance of the different intermolecular interactions change with temperature. The system constants and retention factors for varied compounds are compared with those for Rtx-50 prepared with a similar stationary phase but using a different surface deactivation technique. The two columns are shown to be nearly selectivity equivalent. The Rtx-50 column is slightly more cohesive, dipolar/polarizable and hydrogen-bond basic than Rxi-50, while Rxi-50 is slightly more electron lone pair attractive and hydrogen-bond acidic. Only the difference in hydrogen-bond acidity can be identified with some certainty as related to the difference in deactivation processes. For compounds with a separation greater than 0.2 retention factor units on Rtx-50, it should be relatively straightforward to achieve an acceptable separation for the same compounds on Rxi-50.  相似文献   

10.
Retention for a varied group of compounds on an immobilized artificial membrane column (IAM PC DD2) with a methanol-water mobile phase is shown to fit a second-order model for the retention factor (log k) as a function of the volume fraction of organic solvent. The numerical value of the intercept obtained by linear extrapolation to zero organic solvent (log k(w)) is shown to depend on the range of mobile phase composition used for the extrapolation. Each series of intercepts so obtained represents a different hypothetical distribution system as identified by the system constants of the solvation parameter model. Although a linear model is a poor fit for isocratic retention data, the linear solvent strength gradient model provides a reasonable estimate of isocratic retention factor values that are (slightly) larger than experimental values, but provide the same chemical information for the system. These preliminary results suggest that gradient elution may prove to be a rapid and useful method for creating system maps for column characterization and method development. In this work a system map is provided for methanol-water compositions from 0 to 60% (v/v) methanol and additional system constants for acetonitrile-water compositions containing 20 and 30% (v/v) acetonitrile. It is shown that the main factors contributing to retention on the IAM PC DD2 column are favorable cavity formation and dispersion interactions, electron lone pair interactions and the hydrogen-bond basicity of the sorbent. The latter feature more than any other distinguishes the IAM column from conventional chemically bonded phases. Interactions of a dipole-type (weakly) and inability to compete with the mobile phase as a hydrogen-bond acid reduce retention. A comparison of system constant ratios is used to demonstrate that the retention properties of the IAM column are not easily duplicated by conventional chemically bonded phases. The retention characteristics of the IAM column, however, are strongly correlated with the retention properties of pseudostationary phases used for micellar electrokinetic chromatography, which provide a suitable alternative to IAM columns for physical property estimations. By the same comparative method it is shown that retention on the IAM column possesses some similarity to biomembrane absorption processes, allowing suitable correlation models to be developed for the estimation of certain biopartitioning properties.  相似文献   

11.
The identification of unknown compounds in complex samples is very difficult. Comprehensive two-dimensional gas chromatography (GC x GC) provides very good resolution and improved identification reliability. Mass spectrometry is a powerful identification tool and retention index data are another good approach to this end. In this study, a second-order polynomial was used to calculate retention index data based on n-alkanes beyond the region of the 'isovolatile' curve in GC x GC, and the results in the 2nd dimension were validated by using the same stationary phase column in one-dimensional GC. To test the usefulness of the method, volatile compounds in a tobacco leaf extract fraction were analyzed using GC x GC, and 60 compounds were identified on the basis of their retention indices.  相似文献   

12.
Summary The gas chromatography of all chlorinated methyl acetates, methyl propanoates and methyl mono- and dichlorobutanoates has been studied on Carbowax 20M and SE-30 glass capillary columns under various running conditions. The order of elution on a non-polar column was largely determined by the boiling point of esters, whereas on a polar column it was much influenced by the structure of compounds. Complete separation of the combined mixture of all 27 compounds could not be achieved, however, methyl 3,3-dichlorobutanoate was the only ester overlapped on both columns in spite of the various column temperatures used. The best separation of the mixture was on Carbowax 20M with a temperature program from 50°C at 8°C/min, isothermal running conditions leading either to poor separation of volatile components or long analysis time and broad peaks of higher chlorinated esters. The relative retention times for compounds at the various column temperatures are given and the retention order on a polar and on a non-polar column discussed.  相似文献   

13.
姜舸  沈爱金  郭志谋  李秀玲  梁鑫淼 《色谱》2015,33(9):929-933
糖类化合物因其极性强,在反相色谱模式下保留较弱,因此常用亲水作用色谱(HILIC)对其进行分离分析。本文以9种糖类化合物的混合物为研究对象,系统评价了其在Click TE-Cys亲水色谱柱上的保留行为,分别考察了流动相中有机相比例和盐浓度对其保留行为的影响。实验证明:9种糖类化合物按极性由小到大的顺序依次从Click TE-Cys色谱柱上被洗脱下来。随着有机相比例的增加,糖类化合物的保留增强;随着盐浓度的增加,除唾液酸外的糖类化合物的保留增强。用顶替-吸附液相相互作用模型模拟了糖类化合物在HILIC上的保留行为,采用保留方程ln k=a+blnCB+cCB描述HILIC的保留规律,对HILIC的保留值进行多元线性回归。结果表明糖类化合物在Click TE-Cys色谱柱上的保留行为符合HILIC的保留规律。  相似文献   

14.
A. Sokolowski 《Chromatographia》1986,22(1-6):177-182
Summary Desorption of some organic ions from Bondapak Phenyl was studied. The half height of the desorption curve was used to describe the retention volumes. When the column was equilibrated with two organic ions with opposite charge and one of them was desorbed, the other ion was also partially desorbed and observed as a positive zone. The retention volumes of systems peaks created by disturbing the equilibria in the column, equilibrated with at least one organic ion, were studied. The net retention volumes of the break-through curve, obtained from the adsorption of organic ions, system peaks and desorption curves were compared. At low concentrations of the adsorbable ion in the eluent all three types of retention volumes were equal. Negative zones, obtained when introducing an organic ion into a column equilibrated with an organic ion of the opposite charge, could be used to perform step gradient elution of ionic compounds. By using suitable conditions narrow peaks were obtained.  相似文献   

15.
本文给出了气相色谱柱温智能最佳化的程序设计原理及其应用实例, 用烃/卤代烃混合样作为实际样品进行验证, 预测值与实验值能很好吻合。  相似文献   

16.
For the investigation of a diol phase (Inertsil Diol column) in hydrophilic interaction chromatography, urea, sucrose and glycine were used as test compounds. The chromatographic conditions were investigated for optimal column efficiency. The column temperature used in common reversed-phase liquid chromatography could also be used for the separation and the flow-rate should be adjusted to 0.3-0.5 ml/min to optimize column efficiency. It is suggested that the velocity of the hydrophilic interaction is slower than the hydrophobic interaction in RPLC. The addition of trifluoroacetic acid is effective for the retention of glycine, but ineffective for urea and sucrose. The diol phase exhibited sufficient chemical stability even if exposed to water in high percentage, and could be applied with isocratic elution for the separation/analysis of amino acids and glucose.  相似文献   

17.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

18.
Two-stage capillary GC with two-stage retention index monitoring is an efficient analytical technique which can be used for detection and determination of small amounts of volatile compounds in complex mixtures of hundreds or thousands of other compounds. The system employs two capillary columns, coated with different stationary phases, connected on-line with the aid of a micro valve; the first column acts as a pre-separating unit from which unresolved fractions of interest are cut (transferred) into another column for final, interference-free separation of the compounds to be determined. This technique has been compared with selected ion monitoring capillary GC-MS using a hydrocarbon mixture as a test sample for comparing resolution, repeatability, and the practical usefulness of the techniques. Results indicate that two-stage capillary GC is very useful for mixtures containing compounds which produce mostly non-specific ions in the MS ion source whereas compounds producing specific ions can be easily analyzed by capillary GC – single ion monitoring MS even if they are not perfectly separated by a single capillary column.  相似文献   

19.
Quantification of neurotransmitters as biologically active analytes in neurological samples is of high interest for studying their effect on multiple targets. This work is part of a strategy involving two-dimensional liquid chromatography (2D LC) system with mass spectrometry (MS) detection. The concept of the on-line LC system is the coupling of reversed phase liquid chromatography (RPLC, the second separation dimension) to ion-exchange chromatography (IEC, the first dimension). Our objective in this study is to find the appropriate second dimension column, ensuring that samples of neurotransmitters are refocused and separated on it. Silica-based columns designed specifically to retain polar compounds were tested in LC conditions and compared with results obtained with a porous graphitic carbon (PGC, Hypercarb) column. These polar embedded, polar endcapped, and high-density alkyl chain columns successfully separated analytes in question using mobile phase systems with high percentage of water, or even pure water. Only Hypercarb column provided efficient retention of the most polar neurotransmitters and could be used for trapping and preconcentrating the compounds without rapid breakthrough.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号