首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The space-time dynamics of an acoustic field produced by a piezoelectric transducer in a pulsed mode is studied. The detection of acoustic fields is achieved using a Doppler laser interferometer. It is shown that, for a pictorial representation of the dynamics of a pulsed process, it is convenient to use the patterns of instantaneous spatial field distributions within the scanning area, the observation of which at successive instants makes it possible to trace the acoustic field variations on a time scale considerably smaller than the period of the ultrasonic wave. Experimental data demonstrating the process of phase propagation along the sample boundary as a function of time are presented. They are in good agreement with theoretical results obtained by using various methods of acoustic field calculation and different scalar potential distributions over the transducer surface. It is shown that the velocity of phase propagation along the sample boundary, which is mainly determined by the wave front curvature of the elastic wave incident on the sample surface, can considerably exceed the wave velocity in the unbounded medium.  相似文献   

2.
The ignition process, mode of combustion and reaction front propagation in a partially premixed combustion (PPC) engine running with a primary reference fuel (87% iso-octane, 13% n-heptane by volume) is studied numerically in a large eddy simulation. Different combustion modes, ignition front propagation, premixed flame and non-premixed flame, are observed simultaneously. Displacement speed of CO iso-surface propagation describes the transition of premixed auto-ignition to non-premixed flame. High temporal resolution optical data of CH2O and chemiluminescence are compared with simulated results. A high speed ignition front is seen to expand through fuel-rich mixture and stabilize around stoichiometry in a non-premixed flame while lean premixed combustion occurs in the spray wake at a much slower pace. A good qualitative agreement of the distribution of chemiluminescence and CH2O formation and destruction shows that the simulation approach sufficiently captures the driving physics of mixed-mode combustion in PPC engines. The study shows that the transition from auto-ignition to flame occurs over a period of several crank angles and the reaction front propagation can be captured using the described model.  相似文献   

3.
湍流大气中高斯谢尔光束的波前位错   总被引:12,自引:12,他引:0  
张逸新  陶纯堪 《光子学报》2005,34(12):1841-1844
在Rytov近似下,通过引入短期统计平均位错位置的概念,研究了高斯谢尔光束通过近地面弱湍流大气传播时,波前圆形位错形成和位错位置与湍流大气起伏强度和传播距离等参数间的关系.基于湍流大气中平行和交叉双光束的简化近似传输模型,研究了湍流大气中传播高斯谢尔光束波前位错位置与大气湍流强度、传输距离等参数间的相关机制.在远小于光波位相起伏周期的条件下,分别得出了束径不同同轴双光束和交叉双光束传播情况下波前圆位错位置的湍流系综统计平均理论关系.所得结果表明,同轴平行光束干涉和交叉光束干涉所产生的光束波前位错受大气湍流强度、传输距离等参数调制的规律是不同的.  相似文献   

4.
We studied the propagation of traveling fronts into an unstable state of the reaction-transport systems involving integral transport. By using a hyperbolic scaling procedure and singular perturbation techniques, we determined a Hamiltonian structure of reaction-transport equations. This structure allowed us to derive asymptotic formulas for the propagation rate of a reaction front. We showed that the macroscopic dynamics of the front are "nonuniversal" and depend on the choice of the underlying random walk model for the microscopic transport process.  相似文献   

5.
A method of signal processing is proposed that allows one to determine the propagation time of pulsed signals, the dispersion, and the selective absorption in the medium when the shape of the pulses is substantially distorted under the effect of the two aforementioned factors and noise. The method is based on measuring the complex frequency response of the propagation path for a narrow frequency band within which the frequency response is governed by the desired parameters of the medium. To determine the parameters of the path from the data of acoustic measurements, both cepstral analysis and numerical differentiation are used. The data of numerical experiments are presented.  相似文献   

6.
A finite-difference algorithm is developed for analysing the nonlinear propagation of pulsed and harmonic ultrasonic waves in fluid media. The time domain model allows simulations from linear to strongly nonlinear plane waves including weak shock. Effects of absorption are included. All the harmonic components are obtained from only one solving process. The evolution of any original signal can be analysed. The nonlinear solution is obtained by the implicit scheme via a fast linear solver. The numerical model is validated by comparison to analytical data. Numerical experiments are presented and commented. The effect of the initial pulse shape on the evolution of the pressure waveform is especially analysed.  相似文献   

7.
Autocatalytic reaction fronts generate density gradients that may lead to convection. Fronts propagating in vertical tubes can be flat, axisymmetric, or nonaxisymmetric, depending on the diameter of the tube. In this paper, we study the transitions to convection as well as the stability of different types of fronts. We analyze the stability of the convective reaction fronts using three different models for front propagation. We use a model based on a reaction-diffusion-advection equation coupled to the Navier-Stokes equations to account for fluid flow. A second model replaces the reaction-diffusion equation with a thin front approximation where the front speed depends on the front curvature. We also introduce a new low-dimensional model based on a finite mode truncation. This model allows a complete analysis of all stable and unstable fronts.  相似文献   

8.
Phenomena such as flame propagation, flame/spray interaction and flame stabilization during the transient ignition process in a cryogenic model rocket combustor are investigated on sub-millisecond time scale. Diagnostic techniques developed to characterize the stationary spray flame are applied to investigate the transient evolution of the LOX-spray and the flame front during the ignition process. Ignition is initiated by focusing a pulsed laser into the combustion chamber. Thus, ignition time as well as the position of ignition is well defined. This and the exact control of the delay between ignition and detection time allowed the observation of the evolution of the flame front. The distribution of the liquid oxygen phase and the velocity of LOX droplets and ligaments are determined by light sheet techniques using a double-pulsed laser system. Simultaneously the position of the flame front is measured by recording the spontaneous emission of the OH-radical. By varying the delay timet between ignition and detection in a series of test runs, the transient ignition phenomena has been investigated in the interval from 0 to 5 ms after ignition.  相似文献   

9.
Local scalar front structures of OH mole fraction, reaction progress variable, and its three-dimensional gradient have been measured in stagnation-type turbulent premixed flames. The reaction progress variable front is observed to change with increasing turbulence from parallel iso-scalar contours but reduced progress variable gradients, called the lamella-like front, to disrupted non-parallel iso-contours that deviate substantially from those of wrinkled laminar flamelets, called the non-flamelet front. This transition is attributed to the different scales of interaction between the flame internal structure and a spectrum of turbulence extending from the integral scale to the Kolmogorov scale. The lamella-like front pattern occurs when the length scales of interaction are smaller than the laminar flame thickness but the time scales are greater than the flame residence time. The non-flamelet front pattern occurs when the length scales of interaction are greater than the laminar flame thickness but the time scales are smaller than the flame residence time. This difference corresponds to the change of combustion regime from complex-strain flame front to turbulent flame front on a revised regime diagram. A correlation is also proposed for the turbulent flame brush thickness as a function of turbulent Reynolds number and heat release parameter. The heat release parameter is considered to arise from the non-passive effects of flame-surface wrinkling.  相似文献   

10.
The propagation of low-frequency pulsed frequency-modulated signals in the shallow water (80m deep) is analyzed. The characteristics of the first five modes in the frequency range from 25 to 155 Hz are found by the correlation analysis of signal spectra. The group velocities and mode attenuation coefficients are used to reconstruct the acoustic characteristics of the sea bottom. A model of the sea bottom is developed, which allows one to formulate the model of transfer function along the signal propagation path.  相似文献   

11.
Detonation front structure and the competition for radicals   总被引:1,自引:0,他引:1  
We examine the role of competition for radical species in determining detonation front structure for hydrogen and selected hydrocarbon fuels in air and oxygen. Numerical simulations and detailed reaction mechanisms are used to characterize the reaction zone length, shape, and sensitivity to temperature variation. We find that the effect of the competition for radicals on the energy release rate characteristics varies significantly for the chosen mixtures. Hydrogen exhibits a strong effect while in methane and ethane mixtures the effect is absent. Other hydrocarbons including acetylene, ethylene, and propane fall between these extreme cases. This competition is manifested by a peak in effective activation energy associated with a shift in the dominant reaction pathway in the initial portion of the reaction zone. The peak of the effective activation energy is centered on the extended second explosion limit. A five-step, four species reaction model of this competition process has been developed and calibrated against numerical simulations with detailed chemistry for hydrogen. The model includes a notional radical species and reactive intermediate in addition to reactants and products. The radical species undergoes chain-branching and there is a competing pathway through the reactive intermediate that is mediated by a three-body reaction followed by decomposition of the intermediate back to the radical species. We have used this model in two-dimensional unsteady simulations of detonation propagation to examine the qualitative differences in the cellular instability of detonation fronts corresponding to various degrees of competition between the chain-branching and reactive intermediate production. As the post-shock state approaches the region of competition between the radical and reactive intermediate, the detonation front becomes irregular and pockets of the reactive intermediate appear behind the front, but the detonation continues to propagate.  相似文献   

12.
13.
A wavelet-transformed ultrasonic propagation imaging method capable of ultrasonic propagation imaging in the frequency domain was developed and applied as a new structural damage or flaw visualization algorithm. Since the wavelet-transformed ultrasonic propagation imaging method has strong frequency selectivity, it can visualize the propagation of ultrasonic waves of a specific frequency (for example, to isolate ultrasonic mode of interest and a damage-related ultrasonic wave). The strong frequency selectivity of the wavelet-transformed ultrasonic propagation imaging method was demonstrated, isolating only the zeroth-order asymmetrical mode of the fundamental Lamb wave modes in an anisotropic carbon fiber-reinforced plastic plate with a thickness of 5 mm. The wavelet-transformed ultrasonic propagation imaging method can also convert a complex time domain multiple wavefield into a simple frequency domain single wavefield. This feature enables easy interpretation of the results, and facilitates the precise evaluation of the location and size of structural damage or flaws. We demonstrated this capability by detecting a disbond in a sandwich structure made of Al-alloy skins and a foam core. A disbond with a diameter of 20 mm, which is representative of a common manufacturing flaw, was successfully detected, localized, and evaluated. Since a method to determine the allowable maximum pulse repetition frequency depending on target materials and structures was found by investigating the residual wave caused from the previous laser impinging, our laser ultrasonic system can scan rapidly the target with an optimal pulse repetition rate. In addition, the proposed wavelet-transformed ultrasonic propagation imaging method can visualize damage or flaw without the need for reference data from the intact state of the structure. Hence, we propose the wavelet-transformed ultrasonic propagation imaging approach for automatic inspection of in-service engineering structures, or in-process quality inspection in manufacturing.  相似文献   

14.
Boundary layers are omnipresent in fundamental kinetic experimental facilities and practical combustion engines, which can cause ambiguity and misleading results in kinetic target acquisition and even abnormal engine combustion. In this paper, using n-heptane as a representative large hydrocarbon fuel exhibiting pronounced low-temperature chemistry (LTC), two-dimensional numerical simulation is conducted to resolve the transient autoignition phenomena affected by a boundary layer. We focus on the ignition characteristics and the subsequent combustion mode evolution of a hot combustible mixture flowing over a colder flat plate in an isobaric environment. For cases with autoignition occurring within the boundary layer, similarity is observed in the first-stage ignition as manifested by a constant temperature at all locations. The first-stage ignition is found to be rarely affected by heat and radical loss within the boundary layer. While for the main ignition event, an obvious dependence of ignition process on boundary layer thickness is identified, where the thermal-chemical process exhibits similarity at locations with similar boundary layer thickness, and the main ignition tends to first occur within the boundary layer at the domain end and generates a C-shape reaction front. It is found that sequential spontaneous autoignition is the dominant subsequent combustion mode at high-pressure conditions. At low to intermediate pressures, auto-ignition assisted flame propagation is nevertheless the dominant mode for combustion evolution. This research identifies novel features of autoignition and the subsequent combustion mode evolution affected by a cold, fully developed boundary layer, and provides useful guidance to the interpretation of abnormal combustion and combustion mode evolution in boundary layer flows.  相似文献   

15.
We investigate the problem of front propagation in bistable media with fluctuating properties. The explicit formulas for the induced variations of the propagating speed and the dispersion of the front position are derived under the assumption that fluctuations in the properties of the medium are weak but can have arbitrary spatial and temporal correlation ranges.  相似文献   

16.
The ignition of hydrocarbons at low temperatures is experimentally studied in a rapid-mixture-injection static reactor. The ignition process was monitored using a high-speed color video camera. It was found that, at low temperatures, ignition starts in kernels, a feature also characteristic of methods for measuring the ignition delay time at high and medium temperatures (shock tube, rapid compression machine). Kernel-mode ignition is associated with gas-dynamic phenomena inherent in different techniques of heating the gas to the desired temperature. Ignition in the kernel is of chain-thermal nature. The emergence of a visible kernel can be considered the beginning of hot flame propagation. It is shown that, in the self-ignition mode, the propagation of the flame front from the initial kernel occurs by the induction mechanism, proposed by Ya.B. Zel’dovich, rather than by the diffusion-heat-conduction mechanism. Introduction of a platinum wire into the reactor produces a catalytic effect in the negative temperature coefficient region, while virtually unaffecting the ignition delay at lower temperatures.  相似文献   

17.
The computational technique is developed in order to provide the scale capturing for numerical simulation of the thermal processes. The thermal front motion and gas flow dynamics as well as the rate of particle growth during the Carbon Combustion Synthesis of Oxides (CCSO) were predicted using the numerical simulation. In CCSO the exothermic oxidation of carbon nanoparticles generates a self-sustained thermal reaction front that propagates through the solid reactant mixture converting it to the desired complex oxides. The combusted carbon is emitted from the sample as carbon dioxide and its high rate of release increases the product porosity and friability. It was shown that the complicated finger front instability can be developed during the carbon combustion synthesis. This phenomenon results from a vortex gas flow in the reaction zone fed by the carbon dioxide co-flow and oxygen counter-flow filtration.  相似文献   

18.
Previously it has been demonstrated that cortical bone thickness can be estimated from ultrasonic guided-wave measurements, in an axial transmission configuration, together with an appropriate analytical model. This study considers the impact of bone thickness variation within the measurement region on the ultrasonically determined thickness (UTh). To this end, wave velocities and UTh were determined from experiments and from time-domain finite-difference simulations of wave propagation, both performed on a set of ten human radius specimens (29 measurement sites). A two-dimensional numerical bone model was developed with tunable material properties and individualized geometry based on x-ray computed-tomography reconstructions of human radius. Cortical thickness (CTh) was determined from the latter. UTh data for simulations were indeed in a excellent accordance (root-mean-square error was 0.26 mm; r2=0.94, p<0.001) with average CTh within the measurement region. These results indicate that despite variations in cortical thickness along the propagation path, the measured phase velocity can be satisfactorily modeled by a simple analytical model (the A(0) plate mode in this case). Most of the variability (up to 85% when sites were carefully matched) observed in the in vitro ultrasound data was explained through simulations by variability in the cortical thickness alone.  相似文献   

19.
A simple physics-based mathematical model is developed for prediction of the propagation of a grass-fire front driven by an ambient wind and by entrainment winds generated from one or more burning structures. This model accounts for the heterogeneous nature of the burning in a particular wildland–urban-interface (WUI) setting, where the entrainment from fundamentally three-dimensional structure-fire plumes can change the propagation of a two-dimensional ground-fire front. Data on grass fires and estimates of structure fires are presented and compared to justify the model. Scaling effects on the fire-front propagation-speed are given as a function of the location of the front, of the heat release rate of a single burning structure, of the total number of burning structures and of the burning-structure density. Also, detailed front propagation changes due to a single and multiple burning-house scenarios are presented.  相似文献   

20.
悬浮RDX炸药粉尘爆轰的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
用两相流模型对悬浮RDX炸药粉尘爆轰波进行了数值模拟。RDX炸药颗粒在爆轰波阵面后的高温高速气流中加速并升温,颗粒表面发生熔化。参考液滴在高速气流作用下剥离的效应,假设炸药熔化部分在高速气流的作用下发生剥离,破碎成极小的颗粒,瞬时发生分解反应,释放出能量支持爆轰波传播。数值模拟了在不同粒径和浓度的悬浮RDX炸药粉尘中爆轰波的发展与传播过程,得到了爆轰波流场中气-固两相的物理量分布,并确定了爆轰波参数。在较低的RDX粉尘浓度条件下,爆轰波阵面压力的峰值曲线出现振荡。当RDX粉尘浓度在80~150 g/m3时,数值模拟得到的爆轰波阵面压力峰值曲线的振荡是规则的;当RDX粉尘浓度为70 g/m3时,爆轰波阵面压力峰值曲线出现不规则振荡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号