首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Arsenate [As(V)] solution reference material, National Metrology Institute of Japan (NMIJ) certified reference material (CRM) 7912-a, for speciation of arsenic species was developed and certified by NMIJ, the National Institute of Advanced Industrial Science and Technology. High-purity As2O3 reagent powder was dissolved in 0.8 M HNO3 solution and As(III) was oxidized to As(V) with HNO3 to prepare 100 mg kg-1 of As(V) candidate CRM solution. The solution was bottled in 400 bottles (50 mL each). The concentration of As(V) was determined by four independent analytical techniques—inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, graphite furnace atomic absorption spectrometry, and liquid chromatography inductively coupled plasma mass spectrometry—according to As(V) calibration solutions, which were prepared from the arsenic standard of the Japan Calibration Service system and whose species was guaranteed to be As(V) by NMIJ. The uncertainties of all the measurements and preparation procedures were evaluated. The certified value of As(V) in the CRM is (99.53 ± 1.67) mg kg-1 (k = 2).  相似文献   

2.
A sulfur reference solution at the 1 mg kg−1 level, NMIJ CRM 4215-a, has been issued by the National Metrology Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The intended use of this CRM is for the calibration of standards used in the determination of sulfur in liquid fuels. The certified value of this CRM was determined using the gravimetric blending method. Thiophene and toluene were chosen as the high purity sulfur compound and the dilution solvent, respectively. Measurements of the trace sulfur in the solvent were performed using the total sulfur analyzer with an enrichment system; the standard addition method was employed. When trace sulfur in the solvent was evaluated, the signal which appears with no sample injection was subtracted as the background.  相似文献   

3.
Two types of sediment reference material (NMIJ 7302-a and 7303-a) for trace elements analysis have been prepared and certified by the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The original materials were collected from a bay near industrial activity in Kyushu (NMIJ CRM 7302-a; marine sediment) and from Lake Biwa (NMIJ CRM 7303-a; lake sediment). The sediment materials were air-dried, sieved, homogenized, packaged in 1000 glass bottles (60 g each), and radiation sterilized. Certification of these CRM for trace elements was conducted by NMIJ, where each element was determined by at least two independent analytical techniques. Isotope-dilution inductively coupled plasma mass spectrometry (ICP–MS) was applied for certification of all the elements except mono-nuclide elements such as As and Co. Other techniques such as ICP–MS with quadrupole mass spectrometry and sector-field mass spectrometry, inductively coupled plasma atomic emission spectrometry (ICP–AES), and atomic absorption spectrometry (AAS), were also used. Certified values have been provided for 14 elements (Sb, As, Cd, Cr, Co, Cu, Pb, Hg, Mo, Ni, Se, Ag, Sn, and Zn) in both CRM.  相似文献   

4.
An arsenobetaine [(CH3)3As+CH2COO] solution reference material, NMIJ CRM 7901-a, intended for use in the speciation of arsenic compounds, was developed and certified by the National Metrology Institute of Japan (NMIJ), part of the National Institute of Advanced Industrial Science and Technology (AIST). The high-purity arsenobetaine powder was synthesized from trimethylarsine [(CH3)3As], and it was dissolved in water in order to prepare 20 mg kg−1 of arsenobetaine standard solution. The solution was bottled in 500 bottles (each containing 10 ml). Certification of the CRM for arsenobetaine was conducted by NMIJ. The concentration of As was determined by four independent analytical techniques (ICP–MS, ICP–OES, GFAAS and LC–ICP–MS), and each result was converted to the arsenobetaine concentration by applying an appropriate factor. The arsenobetaine concentration in the CRM was thus certified.  相似文献   

5.
Certified reference materials (CRMs) are playing an increasingly important role in environmental monitoring in Japan. The National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) has been developing CRMs of organic calibration solutions since 2003, and has issued several NMIJ CRMs. The development of these materials was conducted at the NMIJ in cooperation with candidate material producers. The freezing-point depression method was principally adopted for assessment of the purity of starting materials to give reliable certified values. Gas chromatography with flame ionization detection (GC–FID) and/or high-performance liquid chromatography (HPLC), which are based on independent principles and whose levels of accuracy are well evaluated, were applied in combination with other methods to avoid any possible analytical bias. Purity assessment is outlined for two typical examples, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDD) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT), which were used as starting materials for a CRM under development. Methods adopted for gravimetric preparation and ampouling of solutions were qualified and optimized to reduce the uncertainties of certified values due to these factors. Furthermore, a new experimental scheme for assessment of stability and preparation variation is proposed for the proper estimation of uncertainties. Presented at BERM-11, October 2007, Tsukuba, Japan.  相似文献   

6.
A new calibration solution reference material for the determination of perfluorooctane sulfonate anion (PFOS) and its salts has been issued as a certified reference material (CRM) by the National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The purity amount-of-substance fraction of raw material potassium perfluorooctane sulfonate (K-PFOS) was evaluated based on the results obtained using the freezing point depression method, and the purity mass fraction of the raw material was calculated using the average molar mass of impurities, the molar mass of K-PFOS, and the purity amount-of-substance fraction. The certified concentration of this CRM was obtained by multiplying the dilution ratio of the raw material in a prepared solution (methanol) determined from the gravimetric blending method by the purity of the raw material. The preparation concentration of K-PFOS as a certified value of NMIJ CRM 4220-a was determined to be 9.93?mg?kg?1. In addition, the standard uncertainty of the certified value was evaluated from the purity evaluation as well as from sample inhomogeneity, instability, and preparation variation obtained from LC/MS measurements of different gravimetrically prepared solutions of the NMIJ CRM. Consequently, the expanded uncertainty was estimated to be 0.15?mg?kg?1 with a coverage factor k?=?2 corresponding to the half-width of estimated confidence interval of approximately 95%.  相似文献   

7.
A new cod fish tissue certified reference material, NMIJ CRM 7402-a, for methylmercury analysis was certified by the National Metrological Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Cod fish was collected from the sea close to Japan. The cod muscle was powdered by freeze-pulverization and was placed into 600 glass bottles (10 g each), which were sterilized with γ-ray irradiation. The certification was carried out using species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID–GC–ICPMS), where 202Hg-enriched methylmercury (MeHg) was used as the spike compound. In order to avoid any possible analytical biases caused by nonquantitative extraction, degradation and/or formation of MeHg in sample preparations, two different extraction methods (KOH/methanol and HCl/methanol extractions) were performed, and one of these extraction methods utilized two different derivatization methods (ethylation and phenylation). A double ID method was adopted to minimize the uncertainty arising from the analyses. In order to ensure not only the reliability of the analytical results but also traceability to SI units, the standard solution of MeHg used for the reverse-ID was prepared from high-purity MeHg chloride and was carefully assayed as follows: the total mercury was determined by ID–ICPMS following aqua regia digestion, and the ratio of Hg as MeHg to the total Hg content was estimated by GC–ICPMS. The certified value given for MeHg is 0.58 ± 0.02 mg kg−1 as Hg. Figure NMIJ CRM 7402-a: cod fish tissue for MeHg analysis  相似文献   

8.
A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 μm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.  相似文献   

9.
Matrix certified reference materials (CRMs) are playing an increasingly important role in environmental monitoring in Japan. The National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) has been developing matrix CRMs for environmental monitoring since 2001, and has issued nine kinds of CRMs as NMIJ CRMs. The development of the CRMs was conducted in NMIJ in cooperation with candidate material producers. The isotope dilution mass spectrometry (IDMS) was principally adopted to give reliable certified values. Meanwhile, two or more analytical methods, whose levels of accuracy were well evaluated, were applied to avoid any possible analytical bias. Two typical certification processes, the certification of river water CRMs for trace element analysis and that of marine sediment CRMs for PCB and organochlorine pesticide analysis, are outlined as examples. Presented at -- “BERM-10” -- April 2006, Charleston, SC, USA.  相似文献   

10.
Two marine sediment certified reference materials, NMIJ CRM 7304-a and 7305-a, have been issued by the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) for the determination of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The raw materials of the CRMs were collected from a bay near industrial activity in Japan. Characterization of these CRMs was conducted by NMIJ, where the sediments were analyzed using multiple analytical methods such as pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), saponification, Soxhlet extraction, supercritical fluid extraction (SFE), and ultrasonic extraction; the target compounds were determined by one of the primary methods of measurements, isotope dilution–mass spectrometry (ID-MS). Certified values have been provided for 14 PCB congeners (PCB numbers 3, 15, 28, 31, 70, 101, 105, 138, 153, 170, 180, 194, 206, 209) and 4 OCPs (γ-HCH, 4,4′-DDT, 4,4′-DDE, 4,4′-DDD) in both CRMs. NMIJ CRM 7304-a has concentrations of the contaminants that are a factor of 2–15 greater than in CRM 7305-a. Both CRMs have information values for PCB homolog concentrations determined by collaborative analysis using a Japanese official method for determination of PCBs. The total PCB concentrations in the CRMs are approximately 920 and 86 μg kg−1 dry mass respectively. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
Fish certified reference material (CRM), NMIJ CRM 7404-a, for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was developed by the National Metrology Institute of Japan, part of the National Institute of Advanced Industrial Science and Technology. Fish samples (Japanese seabass) used for the preparation of the CRM were collected from Tokyo Bay, and the edible part was freeze-dried, pulverized, sieved, homogenized, and sterilized by γ-irradiation. This sample is in the form of a powder comprising approximately 10 g stored in a brown glass bottle. The certification was carried out using multiple analytical methods such as pressurized liquid extraction, Soxhlet extraction, saponification, and homogenization to ensure the reliability of analytical results; the certified values of target PCBs (PCB 28, PCB 70, PCB 105, PCB 153, and PCB 170) and OCPs (trans-nonachlor, dieldrin, p,p′-DDE, p,p′-DDT, and p,p′-DDD) were 1.05–14.0 μg kg−1 and 1.57–18.0 μg kg−1 for PCBs and OCPs, respectively. This is the first fish powder CRM in which PCBs and OCPs were determined by isotope dilution mass spectrometry.  相似文献   

12.
A new marine sediment reference material (NMIJ CRM 7301-a) for butyltins analysis was prepared and certified by the National Metrological Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The original material of the sediment was collected at a bay near industrial activities in Japan. The sediment material was air-dried, sieved, homogenized, and packaged into 1,000 glass bottles (60 g each). Certification of NMIJ CRM 7301-a was carried out at NMIJ using two different types of species-specific isotope dilution mass spectrometry: isotope dilution–ethylation–gas chromatography/inductively coupled plasma mass spectrometry (GC/ICPMS) and isotope dilution–ethylation–gas chromatography/mass spectrometry (GC/MS). A mixture of 118Sn-enriched monobutyltin, dibutyltin, and tributyltin was synthesized in our laboratory and was used as a spike for both techniques. Certified values are given for tributyltin (0.044±0.004 mg kg–1 as Sn), dibutyltin (0.056±0.006 mg kg–1 as Sn, and monobutyltin (0.058±0.013 mg kg–1 as Sn), being at lower levels than currently available sediment CRMs for the analysis of organotins.  相似文献   

13.
Microwave digestion and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-SFMS) has been applied to the determination of Pb in rice flour. In order to achieve highly precise determination of low concentrations of Pb, the digestion blank for Pb was reduced to 0.21 ng g−1 after optimization of the digestion conditions, in which 20 mL analysis solution was obtained after digestion of 0.5 g rice flour. The observed value of Pb in a non-fat milk powder certified reference material (CRM), NIST SRM 1549, was 16.8 ± 0.8 ng g−1 (mean ± expanded uncertainty, k = 2; n = 5), which agreed with the certified value of 19 ± 3 ng g−1 and indicated the effectiveness of the method. Analytical results for Pb in three brown rice flour CRMs, NIST SRM 1568a, NIES CRM 10-a, and NIES CRM 10-b, were 7.32 ± 0.24 ng g−1 (n = 5), 1010 ± 10 ng g−1 (n = 5), and 1250 ± 20 ng g−1 (n = 5), respectively. The concentration of Pb in a candidate white rice flour reference material (RM) sample prepared by the National Metrology Institute of Japan (NMIJ) was observed to be 4.36 ± 0.28 ng g−1 (n = 10 bottles). Figure Digestion blank of Pb was carefully reduced to approximately 0.2 ng g-1 which permitted the highly precise determination of Pb at low ng g-1 level in foodstuff samples by ID-SFMS  相似文献   

14.
A certified reference material (CRM) for the determination of perfluorooctane sulfonate (PFOS) in acrylonitrile-butadiene-styrene (ABS) resin (NMIJ CRM 8155-a) has been issued by the National Metrology Institute of Japan (NMIJ). The bulk material was prepared by mixing commercial ABS resin powder and potassium PFOS and cut into square plates (20 × 20 mm, 2 mm thick) as the CRM. Analytical processes combined with isotope-dilution mass spectrometry and liquid chromatography/mass spectrometry were optimised and applied for characterisation. One of the approaches adopted by NMIJ for certification is that results from two or more primary methods of measurement should be used; thus, two optimised isotope-dilution mass spectrometric methods (Methods 1 and 2 with reprecipitation and with reprecipitation/solid phase extraction, respectively, were validated mutually and employed) were used to determine the certified value. Homogeneity and stability of the square plates were evaluated and their uncertainty contributions (as relative standard uncertainties) were 1.43% for inhomogeneity and 6.96% for approximately two years’ instability. The certified mass fraction of linear PFOS (heptadecafluoro-1-octanesulfonic acid) in the CRM with expanded uncertainty (coverage factor k = 2, approximately 95% confidence interval) was (33.1 ± 5.0) mg kg?1 as free acid of PFOS.  相似文献   

15.
A Certified Reference Material (CRM) was prepared at the National Institute for Environmental Studies (NIES), Japan, in collaboration with the National Institute of Radiological Sciences (NIRS), Japan, for the analytical quality assurance of minor and trace elements in food and related matrixes. The starting material for the CRM was all food served in 29 households in Japan over two 3-day periods in 1997-1998, and thus the CRM represented a typical Japanese diet. All foods (meals, snacks, and beverages) were homogenized, freeze-dried, pulverized, blended, dispensed into 1,100 bottles, and sterilized. The within- and between-bottle homogeneity of the prepared CRM was satisfactory for most of the elements. The concentrations of 14 elements (Na, Mg, K, Ca, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Ba, and U) were certified based on a collaborative analysis involving NIES, NIRS, and 20 other laboratories. Reference values were given for the concentrations of 12 additional elements (P, Cl, Fe, Co, Ni, Br, Rb, Mo, I, Cs, Pb, and Th). The elements certified and those given reference values include minerals, essential trace elements, contaminant elements, and long-lived radionuclides. Thus, this CRM is of practical value in the quality assurance of element analysis of foods and diets in nutritional, environmental, and radiological research.  相似文献   

16.
 A new human hair certified reference material (NIES CRM No. 13) for mercury speciation and trace element analysis was prepared at the National Institute for Environmental Studies (NIES), Environmental Agency of Japan. Scalp hair from Japanese males, which is identical with the original material for the previous human hair CRM (NIES CRM No. 5), was used. Special attention was paid to reduce contamination from a grinding vessel during the preparation procedure. A newly-prepared ceramic/Teflon disc mill was used for cryogenic grinding of the hair. 1,000 bottles (3 g each) were produced after sieving and blending of the hair powder. Certified values for total mercury and methylmercury, as well as other trace elements of toxicological and nutritional significance (antimony, cadmium, copper, lead, selenium, and zinc), were determined based on analyses from extensive collaborations. Reference values for 12 elements (aluminium, arsenic, barium, calcium, cobalt, iron, magnesium, manganese, silver, sodium, sulfur and vanadium) were also given. Received: 8 February 1996/Accepted: 4 April 1996  相似文献   

17.
A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.  相似文献   

18.
Prompt gamma activation analysis using a focused thermal neutron guided beam at JAEA JRR-3M was applied to the determination of B in ceramic certified reference materials (BAM CRM S-003 Silicon Carbide Powder and NMIJ CRM 8004-a Silicon Nitride Powder). Cl and Si were used as internal standards to obtain linear calibration curves of B. The analytical result of B in BAM CRM S-003 was in good agreement with the certified value. The relative expanded measurement uncertainties (k = 2) were 4.8% for BAM CRM S-003 and 4.9% for NMIJ CRM 8004-a.  相似文献   

19.
The National Metrology Institute of Japan has issued a certified reference material of biodiesel fuel derived from palm oil (NMIJ CRM 8302-a) for the measurement and quality control of water, methanol, six elements (sulfur, phosphorus, sodium, potassium, magnesium, and calcium), density, and kinematic viscosity. This paper presents the technical details for the characterization of the water content in NMIJ CRM 8302-a. Because the water content in biodiesel is easily affected by ambient humidity, sample handling is extremely difficult. Thus, a sample handling technique that overcomes this limitation was established, and optimized coulometric and volumetric Karl Fischer titrations were performed in order to accurately determine the water content with traceability to the International System of Units. The certified water content and its expanded uncertainty with a coverage factor k = 2 were 393 mg kg?1 and 25 mg kg?1, respectively.  相似文献   

20.
Purity certified reference materials (CRMs) are playing a key role in metrological traceability, because they form the basis for many traceability chains in chemistry. Recently, the National Metrology Institute of Japan (NMIJ) has developed two purity CRMs for creatinine (NMIJ CRM 6005-a) and urea (NMIJ CRM 6006-a), because the concentrations of these two compounds are frequently measured in clinical laboratories for monitoring the renal functions. In the certification of purity CRMs, it is essential that the materials have been thoroughly characterized for purity, and the purity should preferably be determined directly by a primary method of measurements. In the development of these two CRMs, we used the purified materials as candidates. The certified values were assigned based on the results of two different methods; acidimetric titration and nitrogen determination by the Kjeldahl method. Since both methods cannot distinguish some impurities from the target compounds, major impurities in the candidate materials were also identified, quantified, and subtracted. These CRMs can provide a traceability link between routine clinical methods and SI units. Presented at BERM-11, October 2007, Tsukuba, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号