首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The diphosphine 2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)OH (1) reacts with [OsCl(2)(PPh(3))(3)] in presence of an excess of triethylamine to yield the isomeric para-quinone methide derivatives [Os{4-(CH(2))-1-(O)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))] (2 and 3), which differ in the positions of the mutually trans hydride and chloride ligands. Complex 2 reacts with CO to afford the dicarbonyl species [Os{1-(O)-2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(CO)(2)] (4), which results from hydride insertion into the quinonic double bond. Protonation of 2 and 3 leads to the formation of the methylene arenium derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))][OSO(2)CF(3)] (5 a). The diphosphine 1 reacts with [OsCl(2)(PPh(3))(3)] at 100 degrees C under H(2) to afford [Os{1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H(2))(PPh(3))] (6), a PCP pincer complex resulting formally from C(sp(2))--C(sp(3)) cleavage of the C--CH(3) group in 1. C--C hydrogenolysis resulting in the same complex is achieved by heating 2 under H(2) pressure. Reaction of the diphosphine substrate with [OsCl(2)(PPh(3))(3)] under H(2) at lower temperature allows the observation of a methylene arenium derivative resulting from C--H activation, [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(2)(H)] (7). This compound reacts with PPh(3) in toluene to afford the ionic derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))]Cl (5 b). X-ray diffraction studies have been carried out on compounds 2, 3, 4, 5 b, 6, and 7, which allows the study of the structural variations when going from methylene arenium to quinone methide derivatives.  相似文献   

4.
5.
The triplet N,N-dimethylaminophenyl cation, a highly reactive but chemospecific electrophile, has been used as a probe for characterizing the properties of reaction media for a series of imidazolium ILs. With the N-hexyl-N-methyl imidazolium derivatives (not with the N-butyl analogues), hydrogen transfer leading to the aniline was the main process. Trapping by iodide occurred with an inverse dependence on viscosity. Trapping by pi nucleophiles exhibited a more complex behavior. This was explained by the effect of both the bulk viscosity and the structure of the IL cation on both steps of the reaction, namely, initial electrophilic attack and ensuing cation elimination or nucleophile addition. However, with an excellent nucleophile, such as thiophene, or when the latter step was intramolecular, as with 4-pentenol, the difference was obliterated and trapping became uniform. Incorporation of the probe into the IL cation (through insertion into the C--H bond alpha to the imidazolium ring) was demonstrated, while no addition to the anion tested (including bis(trifluoromethanesulfonimide)) took place.  相似文献   

6.
Pool and couple: A method for oxidative C-H/C-H cross-coupling has been developed using "radical-cation pools". Aromatic compounds react with aryl radical cations, which are generated and accumulated by low-temperature electrolysis (see scheme). This method avoids both the nonselective oxidation of substrates and oxidation of products and effects the C-H/C-H cross-coupling of aromatic compounds without metal complexes and chemical oxidants.  相似文献   

7.
8.
9.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

10.
11.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

12.
13.
Transition‐metal‐catalyzed C? H activation has recently emerged as a powerful tool for the functionalization of organic molecules. While many efforts have focused on the functionalization of arenes and heteroarenes by this strategy in the past two decades, much less research has been devoted to the activation of non‐acidic C? H bonds of alkyl groups. This Minireview highlights recent work in this area, with a particular emphasis on synthetically useful methods.  相似文献   

14.
15.
16.
17.
The direct Pd-catalyzed oxidative coupling of two C-H-bonds within N-aryl-enamines 1 allows the efficient formation of differently substituted indoles 2. In this cross-dehydrogenative coupling, many different functional groups are tolerated and the starting material N-aryl-enamines 1 can be easily prepared in one step from commercially available anilines. In addition, the whole sequence can also be run in a one-pot fashion. Optimization data, mechanistic insight, substrate scope, and applications are reported in this full paper.  相似文献   

18.
19.
20.
The reactivity of a range of pyridone and pyrazinone derivatives towards alkynes in the presence of cyclopentadienylcobaltbis(ethene) has been investigated. Depending on the nature of the substrates, [2+2+2]- or [2+2] cycloaddition, C-H, or N-H activation may occur. In the case of pyridones, the first three predominated with N-protected derivatives, whereas substrates containing N-H bonds followed an N-H activation pathway. The [2+2+2] cycloaddition of an N-butynylisoquinolone was applied successfully to the total synthesis of anhydrolycorinone. Pyrazinone substrates showed similar patterns of reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号