首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
In this paper we study analytically the elastic properties of the 2-D and 3-D regular lattices consisting of bonded particles. The particle-scale stiffnesses are derived from the given macroscopic elastic constants (i.e. Young's modulus and Poisson's ratio). Firstly a bonded lattice model is presented. This model permits six kinds of relative motion and corresponding forces between each bonded particle pair. By comparing the strain energy distributions between the discrete lattices and the continuum, the explicit relationship between the microscopic and macroscopic elastic parameters can be obtained for the 2-D hexagonal lattice and the 3-D hexagonal close-packed and face-centered cubic structures. The results suggest that the normal stiffness is determined by Young's modulus and the particle size (in 3-D), and that the ratio of the shear to normal stiffness is related to Poisson's ratio. Rotational stiffness depends on the normal stiffness, shear stiffness and particle sizes. Numerical tests are carried out to validate the analytical results. The results in this paper have theoretical implications for the calibration of the spring stiffnesses in the Discrete Element Method.  相似文献   

2.
Pickering emulsions are emulsions stabilized by colloidal surfactants, i.e. solid particles. Compared with traditional molecular surfactant-stabilized emulsions, Pickering emulsions show many advantages, such as high resistance to coalescence, long-term stability, good biocompatibility and tunable properties. In recent years, Pickering emulsions are widely applied in scientific researches and industrial applications. In this review, we focus on the influences of particle properties on Pickering emulsions, including particle amphiphilicity, concentration, size and shape, and summarize the strategies developed for the preparation of amphiphilic Janus particles. The applications of Pickering emulsions in food industry, cosmetic industry, material science, drug delivery, biomedical research and vaccine adjuvant will also be covered. Pickering emulsions are a unique system for multi-disciplinary studies and will become more and more important in the future.  相似文献   

3.
Grinding behavior of nanoparticles in an attritor mill and the minimum achievable particle size are strongly influenced by the suspension stability. In the present work, suspension stability (i.e. (-potential) of nanoparticles was studied by measuring pH as a function of grinding time in the wet milling process. It was found that after a certain time in an attritor mill, there is no further size reduction and the average product particle size increases monotonically. One of the reasons is that the production of submicron particles leads to more particle-particle interactions and consequently pH of the suspension decreases with grinding time. Usually pH value is related to suspension stability and it can be enhanced by addition of NaOH solution. The maximum negative (-potential of -51.2 mV was obtained at pH of 12 for silica. The higher the (-potential with the same polarity, higher will be the electrostatic repulsion between the particles. Hence, the maximum electrostatic repulsion force was maintained by the adjustment of pH value in wet milling. The experiments were conducted at different pH conditions which were maintained constant throughout the experiments and nanosized particles were obtained consequently.  相似文献   

4.
5.
6.
We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled. Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.  相似文献   

7.
A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.  相似文献   

8.
运用不含裂尖增强函数的扩展有限元法,分别研究了静态及动态载荷作用下颗粒增强复合材料的断裂行为。假定基体和颗粒都为线弹性材料并且绑定完好,研究了不同颗粒位置、数量对基体裂纹尖端断裂参数的影响。数值模拟结果清晰地显示了含刚性颗粒和柔性颗粒时不同的失效机制。结果同时证明本文采用的数值方法能够准确预报颗粒增强复合材料的断裂行为,也更易于被工程界所接受  相似文献   

9.
岩土类颗粒物质宏-细观力学研究进展   总被引:7,自引:1,他引:6  
岩土类颗粒物质在自然界、工程建设以及日常生活中普遍存在,其运动特性的研究在力学界已经开展了几十年.在近20年开展的一系列小尺寸物理实验中,颗粒物质表现出许多新奇现象,人们从物理角度开展了系统研究,在统计力学中,颗粒固体的流体动力学等理论研究以及实验检测技术等方面都取得突破性进展,深刻地揭示了颗粒材料的物理机制,促使力学...  相似文献   

10.
Debonding of particle/matrix interfaces can significantly affect the macroscopic behavior of composite material. We have used a nonlinear cohesive law for particle/matrix interfaces to study interface debonding and its effect on particulate composite materials subject to uniaxial tension. The dilute solution shows that, at a fixed particle volume fraction, small particles lead to hardening behavior of the composite while large particles yield softening behavior. Interface debonding of large particles is unstable since the interface opening (and sliding) displacement(s) may have a sudden jump as the applied strain increases, which is called the catastrophic debonding. A simple estimate is given for the critical particle radius that separates the hardening and softening behavior of the composite.  相似文献   

11.
Transmission signal of radiation in suspension of particles performed with a high spatial and temporal resolution shows significant fluctuations,which are related to the physical properties of the particles and the process of spatial and temporal averaging.Exploiting this connection,it is possible to calculate the particle size distribution (PSD) and particle concentration.This paper provides an approach of transmission fluctuation spectrometry (TFS) with variable spatial averaging,The transmission fluctuations are expressed in terms of the expectancy of transmission square (ETS) and are obtained as a spectrum,which is a function of the variable beam diameter.The reversal point and the depth of the spectrum contain the information of particle size and particle concentration,respectively.  相似文献   

12.
基于均匀化理论的混凝土宏细观力学特性研究   总被引:4,自引:2,他引:2  
在细观层次上将混凝土视为由砂浆基质、骨料及其界面组成的三相复合材料,在此基础上,采用有限元方法,对混凝土弹性本构关系进行数值模拟,利用位移渐近展开技术和均匀化理论建立了多尺度力学框架下的有限元平衡方程,重点考察了单胞尺寸对宏观力学性能的影响,得到了相对最大骨料粒径的最小单胞尺寸,即5~10倍最大骨料粒径.作为例证,对混凝土三点弯梁进行了宏细观尺度数值仿真研究,结果表明:基于本文方法可以较好地反映混凝土的宏观力学行为.此外,由于骨料、砂浆的相互作用,应力分布呈现出宏观渐变平滑与细观局部突变的特征.  相似文献   

13.
One of the great challenges in the science of complex materials – materials capable of emergent behavior such as self-organized pattern formation – is deciphering their “inherent” structural design principles as they deform in response to external loads. We have been exploring the efficacy of techniques from complex networks to the study of dense granular materials as a means to: (i) uncover such design principles and (ii) identify suitable metrics that quantify the evolution of structure during deformation. Herein, we characterize the developing network structure and loss of connectivity in a quasistatically deforming granular medium from the perspective of complex networks. Attention is paid to the evolution of the contact and contact force networks at the local or mesoscopic level, i.e., a particle and its immediate neighbors, as well as the macroscopic level. We explore network motifs and other topological properties at these multiple length scales, in an attempt to find that which best correlates with the constitutive properties of nonaffine deformation and dissipation, spatially and with respect to strain. Key processes or rearrangement events that cause loss of connectivity within the material domain, e.g. microbanding and force chain buckling, are investigated. Network statistics of these processes, previously shown to be major sources of energy dissipation and nonaffine deformation, are then tied to corresponding trends observed in the evolving macroscopic network. It is shown that consideration of the unweighted contact network alone is insufficient to tie dissipation to loss of material connectivity.  相似文献   

14.
15.
The cohesive law for the particle/matrix interfaces in high explosives   总被引:6,自引:0,他引:6  
The debonding of particle/matrix interfaces has an important effect on the macroscopic behavior of composite materials. There are extensive analytical and numerical studies on interface debonding in composite materials based on cohesive zone models which assume a phenomenological relation between the normal (and shear) traction(s) and opening (and sliding) displacement(s) across the particle/matrix interface. However, there are little or no experiments to determine the cohesive law for particle/matrix interfaces in composite materials. In this paper, we develop a method to determine the cohesive law for particle/matrix interfaces in the high explosive PBX 9501. We use the digital image correlation technique to obtain the stress and displacement around a macroscopic crack tip in the modified compact tension experiment of PBX 9501. We use the extended Mori-Tanaka method (which accounts for the effect of interface debonding) and the equivalence of cohesive energy on the macroscale and microscale to link the macroscale compact tension experiment to the microscale cohesive law for particle/matrix interfaces. Such an approach enables us to quantitatively determine key parameters in the microscale cohesive law, namely the linear modulus, cohesive strength, and softening modulus of particle/matrix interfaces in the high explosive PBX 9501. The present study shows that Ferrante et al.'s [1982 Universal binding energy relations in metallic adhesion. In: J.M. Georges (Ed.), Microscopic Aspects of Adhesion and Lubrication, Elsevier, Amsterdam, pp. 19-30.] cohesive law, which is established primarily for bimetallic interfaces, is not suitable to the high explosive PBX 9501.  相似文献   

16.
梯度结构材料因其优异的力学性能被广泛应用于工程结构中.论文整合塑性理论和人工神经网络技术,发展了一种构建梯度结构材料弹塑性本构模型的新方法.该方法基于梯度结构材料不同位置的微结构,构建不同代表性体积单元,进而生成应力应变数据,应用生成的数据训练人工神经网络,建立基于神经网络的材料本构模型.应用该方法,论文开展了针对实际...  相似文献   

17.
18.
We derive a smoothed particle hydrodynamics (SPH) approximation for anisotropic dispersion that only depends upon the first derivative of the kernel function and study its numerical properties. In addition, we compare the performance of the newly derived SPH approximation versus an implementation of the particle strength exchange (PSE) method and a standard finite volume method for simulating multiple scenarios defined by different combinations of physical and numerical parameters. We show that, for regularly spaced particles, given an adequate selection of numerical parameters such as kernel function and smoothing length, the new SPH approximation is comparable with the PSE method in terms of convergence and accuracy and similar to the finite volume method. On other hand, the performance of both particle methods (SPH and PSE) decreases as the degree of disorder of the particle increases. However, we demonstrate that in these situations the accuracy and convergence properties of both particle methods can be improved by an adequate choice of some numerical parameters such as kernel core size and kernel function. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Grinding behavior of nanoparticles in an attritor mill and the minimum achievable particle size are strongly influenced by the suspension stability. In the present work, suspension stability (i.e. ξ-potential) of nanoparticles was studied by measuring pH as a function of grinding time in the wet milling process. It was found that after a certain time in an attritor mill, there is no further size reduction and the average product particle size increases monotonically. One of the reasons is that the production of submicron particles leads to more particle-particle interactions and consequently pH of the suspension decreases with grinding time. Usually pH value is related to suspension stability and it can be enhanced by addition of NaOH solution. The maximum negative ξ-potential of -51.2 mV was obtained at pH of 12 for silica. The higher the ξ-potential with the same polarity, higher will be the electrostatic repulsion between the particles. Hence, the maximum electrostatic repulsion force was maintained by the adjustment ofpH value in wet milling. The experiments were conducted at different pH conditions which were maintained constant throughout the experiments and nanosized particles were obtained consequently.  相似文献   

20.
Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. Due to their coupled magnetoelastic response, MREs are finding an increasing number of engineering applications. In this work, we present a combined experimental and theoretical study of the macroscopic response of a particular MRE consisting of a rubber matrix phase with spherical carbonyl iron particles. The MRE specimens used in this work are cured in the presence of strong magnetic fields leading to the formation of particle chain structures and thus to an overall transversely isotropic composite. The MRE samples are tested experimentally under uniaxial stresses as well as under simple shear in the absence or in the presence of magnetic fields and for different initial orientations of their particle chains with respect to the mechanical and magnetic loading direction.Using the theoretical framework for finitely strained MREs introduced by Kankanala and Triantafyllidis (2004), we propose a transversely isotropic energy density function that is able to reproduce the experimentally measured magnetization, magnetostriction and simple shear curves under different prestresses, initial particle chain orientations and magnetic fields. Microscopic mechanisms are also proposed to explain (i) the counterintuitive effect of dilation under zero or compressive applied mechanical loads for the magnetostriction experiments and (ii) the importance of a finite strain constitutive formulation even at small magnetostrictive strains. The model gives an excellent agreement with experiments for relatively moderate magnetic fields but has also been satisfactorily extended to include magnetic fields near saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号