首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
利用壳层模型分子动力学方法,考虑萤石结构分子中的预熔化现象,对SrF2和BaF2的分子动力学模拟熔化温度进行修正,获得了高压下SrF2和BaF2的熔化温度.同时给出了300K、0.1MPa-7GPa和10.1MPa-3GPa时SrF2和BaF2的状态方程,与已有研究结果的最大误差分别为0.3%和2.2%.计算所得SrF2和BaF2常压下的熔点与已有的实验结果符合较好.对于SrF2和BaF2分子体积变化和已有的熔化模拟的差别也做了比较和讨论.  相似文献   

12.
Molecular dynamics simulation was used to study the melting of MgO at high pressures. The melting temperature of MgO was accurately obtained at elevated temperature and high pressure after corrections based on the modern theory of melting. The calculated melting curve was compared with the available experimental data and other theoretical results at the pressure range of 0-135 GPa. The corrected melting temperature of MgO is in good agreement with the results from Lindemann melting equation and the twophase simulated results below 15 GPa.  相似文献   

13.
The equation of state of ZnO with rocksalt phase under high pressure and high temperature was calculated by using the molecular dynamics method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that molecular dynamics simulation is very successful in accurately reproducing the measured molar volumes of the rocksalt phase of ZnO over a wide range of temperatures and pressures. The simulated P-V -T data matched experimental results up to 10.4 GPa and 1273 K. In addition, the linear thermal expansion coe±cient, isothermal bulk modulus and its pressure derivative were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, the P-V -T relationship, linear thermal expansion coe±cient, and isothermal bulk modulus were predicted up to 2273 K and 50 GPa. The detailed knowledge of thermodynamic behavior and equations of state at extreme conditions are of fundamental importance to the understanding of the physical properties of ZnO.  相似文献   

14.
The equation of state of MgSiO3 perovskite under high pressure and high temperature is simulated using the molecular dynamics method. It was found that the molecular dynamics simulation is very successful in accurately reproducing the measured molar volumes of MgSiO3 perovskite over a wide range of temperatures and pressures. The simulated equation of state of MgSiO3 perovskite matched experimental data at up to 140GPa at 300 K, as well as the fitting data of others and results from the first-principles simulation based on the local density approximation. The simulated equations of state of MgSiO3 perovskite at higher temperatures and higher pressures also correspond to the other calculations. In addition, the volume compression data of MgSiO3 perovskite is simulated up to 120 GPa at 300, 900, 2000 and 3000 K, respectively.  相似文献   

15.
A shell model molecular dynamics method is used to investigate the behavior of the pressure-volume relationship, heat capacities at constant pressure and constant volume, Gr?uneisen parameter for GaN with zinc-blende cubic structure at high pressures and high temperatures. The interactions between Ga-Ga, Ga-N, and N-N are described with polarizable potential models which have assigned two different partially ionic charges to Ga and N by taking into account of the ionic character of GaN. It is shown that the calculated thermodynamic parameters at ambient condition are in good agreement with the available theoretical results. Compared with the results from first-principles calculations, the discrepancy of constant-volumeheat capacity at lower temperature may be explained well with different approximation mechanisms. The properties of GaN with zinc-blende structure are summarized in the temperature range of 300-2000 K andpressure up to 40 GPa.  相似文献   

16.
The method for calculations the embedded atom potential for liquid metals based on the diffraction data on the structure close to the melting temperature was applied to potassium. The embedded atom potential parameters were adjusted using the data on the structure of potassium at 343, 473, and 723 K and the thermodynamic properties of potassium at temperatures up to 37240 K. The use of the molecular dynamics method and the embedded atom potential gave close agreement with the experimental data on the structure, density, and potential energy of liquid metal along the p ? 0 isobar at temperatures up to 2200 K and along the shock adiabat up to a pressure of ~85 GPa and 37240 K. The calculated bulk compression modulus at 343 K was close to its actual value, and the self-diffusion coefficients increased under isobaric heating conditions following a power law with an exponent of 1.6478. The melting temperature of body-centered potassium with the embedded atom potential was (319 ± 1) K, which was close to the actual melting temperature. The potential obtained incorrectly described crystalline potassium.  相似文献   

17.
Nonequilibrium melting and crystallization of a model Lennard-Jones system   总被引:3,自引:0,他引:3  
Nonequilibrium melting and crystallization of a model Lennard-Jones system were investigated with molecular dynamics simulations to quantify the maximum superheating/supercooling at fixed pressure, and over-pressurization/over-depressurization at fixed temperature. The temperature and pressure hystereses were found to be equivalent with regard to the Gibbs free energy barrier for nucleation of liquid or solid. These results place upper bounds on hysteretic effects of solidification and melting in high heating- and strain-rate experiments such as shock wave loading and release. The authors also demonstrate that the equilibrium melting temperature at a given pressure can be obtained directly from temperatures at the maximum superheating and supercooling on the temperature hysteresis; this approach, called the hysteresis method, is a conceptually simple and computationally inexpensive alternative to solid-liquid coexistence simulation and thermodynamic integration methods, and should be regarded as a general method. We also found that the extent of maximum superheating/supercooling is weakly pressure dependent, and the solid-liquid interfacial energy increases with pressure. The Lindemann fractional root-mean-squared displacement of solid and liquid at equilibrium and extreme metastable states is quantified, and is predicted to remain constant (0.14) at high pressures for solid at the equilibrium melting temperature.  相似文献   

18.
The phase diagram and polymorphism of oxygen at high pressures and temperatures are of great interest to condensed matter and earth science. X-ray diffraction and Raman spectroscopy of oxygen using laser and resistively heated diamond anvil cells reveal that the molecular high-pressure phase ε-O(2), which consists of (O(2))(4) clusters, reversibly transforms in the pressure range of 44 to 90 GPa and temperatures near 1000 K to a new phase with higher symmetry. The data suggest that this new phase (η') is isostructural to a phase η reported previously at lower pressures and temperatures, but differs from it in the P-T range of stability and type of intermolecular association. The melting curve increases monotonically up to the maximum pressures studied (~60 GPa). The structure factor of the fluid measured as a function of pressure to 58 GPa shows continuous changes toward molecular dissociation.  相似文献   

19.
Crystal structure of nitromethane up to the reaction threshold pressure   总被引:1,自引:0,他引:1  
Angle dispersion X-ray diffraction (AXDX) experiments on nitromethane single crystals and powder were performed at room temperature as a function of pressure up to 19.0 and 27.3 GPa, respectively, in a membrane diamond anvil cell (MDAC). The atomic positions were refined at 1.1, 3.2, 7.6, 11.0, and 15.0 GPa using the single-crystal data, while the equation of state (EOS) was extended up to 27.3 GPa, which is close to the nitromethane decomposition threshold pressure at room temperature in static conditions. The crystal structure was found to be orthorhombic, space group P2(1)2(1)2(1), with four molecules per unit cell, up to the highest pressure. In contrast, the molecular geometry undergoes an important change consisting of a gradual blocking of the methyl group libration about the C-N bond axis, starting just above the melting pressure and completed only between 7.6 and 11.0 GPa. Above this pressure, the orientation of the methyl group is quasi-eclipsed with respect to the NO bonds. This conformation allows the buildup of networks of strong intermolecular O...H-C interactions mainly in the bc and ac planes, stabilizing the crystal structure. This structural evolution determines important modifications in the IR and Raman spectra, occurring around 10 GPa. Present measurements of the Raman and IR vibrational spectra as a function of pressure at different temperatures evidence the existence of a kinetic barrier for this internal rearrangement.  相似文献   

20.
Raman spectroscopy and synchrotron x-ray diffraction measurements of ammonia (NH(3)) in laser-heated diamond anvil cells, at pressures up to 60 GPa and temperatures up to 2500 K, reveal that the melting line exhibits a maximum near 37 GPa and intermolecular proton fluctuations substantially increase in the fluid with pressure. We find that NH(3) is chemically unstable at high pressures, partially dissociating into N(2) and H(2). Ab initio calculations performed in this work show that this process is thermodynamically driven. The chemical reactivity dramatically increases at high temperature (in the fluid phase at T > 1700 K) almost independent of pressure. Quenched from these high temperature conditions, NH(3) exhibits structural differences from known solid phases. We argue that chemical reactivity of NH(3) competes with the theoretically predicted dynamic dissociation and ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号