首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetrical thin membranes of SrCe0.95Y0.05O3−δ (SCY) were prepared by a conventional and cost-effective dry pressing method. The substrate consisted of SCY, NiO and soluble starch (SS), and the top layer was the SCY. NiO was used as a pore former and soluble starch was used to control the shrinkage of the substrate to match that of the top layer. Crack-free asymmetrical thin membranes with thicknesses of about 50 μm and grain sizes of 5–10 μm were successfully pressed on to the substrates. Hydrogen permeation fluxes (JH2) of these thin membranes were measured under different operating conditions. At 950 °C, JH2 of the 50 μm SCY asymmetrical membrane towards a mixture of 80% H2/He was as high as 7.6 × 10−8 mol/cm2 s, which was about 7 times higher than that of the symmetrical membranes with a thickness of about 620 μm. The hydrogen permeation properties of SCY asymmetrical membranes were investigated and activation energies for hydrogen permeation fluxes were calculated. The slope of the relationship between the hydrogen permeation fluxes and the thickness of the membranes was −0.72, indicating that permeation in SCY asymmetric membranes was controlled by both bulk diffusion and surface reaction in the range investigated.  相似文献   

2.
The atomic absorption spectroscopy (AAS) has been successfully utilized for the measurement of the Pd and Ag ion concentrations in the plating baths and to elucidate the effects of temperature, initial metal ion and reducing agent concentrations and agitation on the electroless plating kinetics of Pd and Ag metals. The initial metal ion concentrations for Pd and Ag were varied over a range of 8.2–24.5 mM and 3.1–12.5 mM, respectively. The plating reactions were conducted in a constant temperature electroless plating bath over a temperature range of 20–60 °C and an initial hydrazine concentration range of 1.8–5.4 mM. It was found that the electroless plating of both Pd and Ag were strongly affected by the external mass transfer in the absence of bath agitation. The external mass transfer limitations for both Pd and Ag deposition have been minimized at or above an agitation rate of 400 rpm, resulting in a maximum conversion of the plating reaction at 60 °C and dramatically shortened plating times with the added advantage of uniform deposition morphology. The derivation of the differential rate laws and the estimation of the reaction orders and the activation energies for the electroless Pd and Ag kinetics were conducted via non-linear regression analysis based on the method of initial rates. For a constant-volume batch reactor, the integrated rate law was solved to calculate the conversion and the reactant concentrations as a function of plating time. The model fits were in good agreement with the experimental data. Furthermore, the bath agitation and the plating conditions used in the kinetics study were adopted for the synthesis of 16–20 μm thick composite Pd/Ag membranes (10–12 wt% Ag) and a pure-Pd membrane with a hydrogen selective dense Pd layer as thin as 4.7 μm. While hydrogen permeance of the Pd/Ag membranes A and B at 450 °C were 28 and 32 m3/m2-h-atm0.5, the H2 permeance for the 4.7 μm thick pure-Pd membrane at 400 °C was as high as 63 m3/m2-h-atm0.5. The long-term permeance testing of all the membranes synthesized from agitated plating baths resulted in a relatively slow leak growth due primarily to the improved morphology obtained via the bath agitation and modified plating conditions.  相似文献   

3.
Three techniques were used to produce palladium–ceramic (Pd–ceramic) composite membranes for hydrogen separation and production. They are sputtering, electroless deposition and rolling of thin Pd alloy films over ceramic porous tubes.After studying and developing the three coating techniques, an extensive testing and characterizing work was carried out on these thin film composite membranes. The results show that in the sputtered (0.5–5 μm) and electroless (2.5–20 μm) composite membranes, the thermal cycling of the hydrogenated metallic layer produces membrane failures. Such failures are characterized by crack formation and metal film peeling. This fact has been explained by an evaluation of the shear stresses at the metal–ceramic interface due to the differential elongation between the palladium (Pd) coating and the ceramic support under thermal cycling and hydrogen loading. The rolled membranes (50–70 μm), however, because of the particular coating solution, have shown a complete hydrogen selectivity and good chemical and physical stability in long-term tests.  相似文献   

4.
Selectivity of product formation has been tested in hydrogenation of acetylene over 0.3 wt.% Pd/-alumina and 0.5 wt.% Pd/TiO2catalysts. Non-steady-state regime of catalyst operation was tested in pulse-flow experiments. Significant carbon poisoning appears to be a necessaryrequisite for selective formation of ethylene. The effect of hydrogen and acetylene partial pressure has been tested on the selectivity of C4products. At 273–298 K the catalysts showed 26–35% selectivity for C4 hydrocarbons and <2.5% for ethane production at conversionsof 30–40%. Deuterium distribution in ethylene and 1,3-butadiene and the deuterium content of the surface hydrogen pool have been compared and mechanismof diene formation has been discussed.  相似文献   

5.
刘剑  董秀珍  郝斌  李悦 《无机化学学报》2012,28(5):1065-1069
以Piranha溶液处理玻璃基板,采用液相沉积技术,制备了钛酸锶晶态薄膜。改性基板的亲水性测定与偏光显微镜测试表明,Piranha溶液能够有效改善玻璃基板的亲水性,并且基板表面的硅烷醇对钛酸锶薄膜的沉积具有积极指导作用;X射线衍射(XRD)与扫描电镜(SEM)表征显示,制备成功的钛酸锶薄膜纯度高,结晶良好,样品表面均匀,在垂直基板表面方向上呈纤维花簇状生长。文章同时对基板表面硅烷醇形成过程进行了研究。  相似文献   

6.
Bi-layer nanostructures of WO3 (~100 nm and 150 nm) with a very thin film of palladium (Pd~10 nm) on the top, have been studied for hydrogen gas-sensing application at ~700C and medium hydrogen concentrations (1 – 4%) in air. The structures were obtained by vacuum deposition (first the WO3 and then the Pd film) onto a LiNbO3 Y- cut Z-propagating substrate and were tested by means of Surface Acoustic Wave method in a three channel delay line configuration. Very repeatable results have been observed for these two nanostructures with changes in frequency on the level of 500 to 1800 Hz for hydrogen concentration from 1 to 4 % in air. The absolute response value depends on the WO3 film thickness and hydrogen gas concentration and is greater for the nanostructure with a thicker WO3 film.  相似文献   

7.
Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.  相似文献   

8.
The liquid-phase hydrogenation of pinane hydroperoxide (PHP) to pinanol on a Pd/C catalyst at 20–80°C and hydrogen pressures of 1–11 atm was studied. It was found that the rate of hydrogenation decreased with PHP concentration. The rate of PHP hydrogenation dramatically increased as the pressure of hydrogen was increased in a range of 2.5–3 atm. A mechanism was proposed for the hydrogenation of PHP. According to this mechanism, the step of hydrogen activation (homolytic or heterolytic addition) depends on the redox properties of the catalyst surface (the ratio between adsorbed PHP species and H2). It was found that pinanol can be prepared with high selectivity by the hydrogenation of PHP on a Pd/C catalyst under mild conditions.  相似文献   

9.
Pinhole-free palladium/nickel (Pd/Ni) alloy membranes deposited on a porous stainless steel (SUS) support have been fabricated. The deposition was made by vacuum electrodeposition technique which could produce the alloy film less than 1 μm thick. This technique allows for the Pd/Ni alloy by employing Pd/Ni complex reagent, and typical Pd/Ni plating had compositions of 78% Pd and 22% Ni. In order to make the surface smooth and enhance the adhesive bond between the top layer and the substrate, a nascent porous SUS disk was treated sequently with submicron nickel powder and CuCN solution. The important parameters that can affect deposition were pore size, defects, and surface roughness of substrate. The membranes were characterized by permeation experiments with hydrogen and nitrogen at temperatures ranging from 623 to 823 K and pressures from 10.3 to 51.7 cmHg. The composite membranes prepared in this technique yielded excellent separation performance for hydrogen: hydrogen permeance of 5.79×10−2 cm3/cm2 cmHg s and hydrogen/nitrogen (H2/N2) selectivity was 4700 at 823 K.  相似文献   

10.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

11.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

12.
The influences of residual chlorine ions and water on the performance of a Pd/Al2O3 catalyst in methane combustion have been studied. The results show that the catalyst containing Cl exhibits a relatively low activity, and the addition of water to the reaction system accelerates the deactivation process. The catalyst has been characterized by N2 adsorption, X-ray fluorescence, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry (TG). The results show that the presence of Cl appears to strongly inhibit the total oxidation of methane and hinder the dispersion of Pd on Al2O3. The formation of Pd(OH)2 during the reaction is the most likely reason for the inhibition effect of water, which is confirmed by FT-IR and TG analysis. The regeneration of the Pd/Al2O3 catalyst can be achieved by purging in nitrogen at 550 °C.  相似文献   

13.
Stille reactions between halobenzenes and other substituted (hetero)arenes and tributylphenyltin were carried out in ethanol-water solution using Pd/CaCO3 as catalyst in a ligand-free system. The catalyst could be recycled three times without any loss of activity. The ethanol-water solution, after removal of the catalyst and extraction of the product, was found to have catalytic activity, thus showing the presence of soluble Pd(0)/Pd(II) species that can be regarded as the true catalysts.  相似文献   

14.
A novel combined organic and inorganic process for preparing thin supported membrane was developed, using which a thin and defect-free Pd membrane with uniform thickness of 5 microm was directly coated onto porous alpha-Al2O3 hollow fiber without any interlayer and substrate penetration; at the same time, there existed a small interstice between membrane and substrate, which led to higher hydrogen permeance, infinite selectivity, and better membrane stability.  相似文献   

15.
Pd/Ag films were electrolessly deposited onto p-silicon (100)-activated seed layers of Ag and Pd, respectively, in the solution of 0.005 mol l−1 AgNO3 + 0.005 mol l−1 PdCl2 + 4.5 mol l−1 NH3 + 0.16 mol l−1 Na2EDTA+0.1 mol l−1 NH2NH2 (pH 10.5) at room temperature. The morphology and composition of the films were studied comparatively by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Cathodic polarization curves for hydrogen evolution were recorded in 0.5-mol l−1 H2SO4 without illumination, in which the obtained films served as working electrodes. The experimental results show that the film obtained on the Ag seed layer was rather a pure Ag film and not a Pd/Ag film, and the Ag deposition rate on Pd sites was much faster than that on Ag sites.  相似文献   

16.
MgH2 is a promising and popular hydrogen storage material. In this work, the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110) surface are investigated by using first-principles density functional theory calculations. We find that a single Pd atom adsorbed on the MgH2(110) surface can signi cantly lower the energy barrier of the hydrogen desorption reactions from 1.802 eV for pure MgH2(110) surface to 1.154 eV for Pd adsorbed MgH2(110) surface, indicating a strong Pd single-atom catalytic effect on the hydrogen desorption reactions. Furthermore, the Pd single-atom catalysis significantly reduces the hydrogen desorption temperature from 573 K to 367 K, which makes the hydrogen desorption reactions occur more easily and quickly on the MgH2(110) surface. We also discuss the microscopic process of the hydrogen desorption reactions through the reverse process of hydrogen spillover mechanism on the MgH2(110) surface. This study shows that Pd/MgH2 thin films can be used as good hydrogen storage materials in future experiments.  相似文献   

17.
Polycarbonate (PC) membranes of different porosity (from 50 nm to 400 nm pore size) were used as separators in a thin layer cell for palladium electrodeposition. Atomic force microscopy (AFM) confirmed the formation of Pd layer between the cathode and porous membrane, with subsequent growth inside the pores induced by space limitations of further growth of initial layer. Our estimates confirm that at this stage Pd deposit feels the pronounced mechanical pressure and consider it as a possible reason of specific hydrogen sorption behaviour in the region of β-phase hydride formation. Up to c.a. 1.0 H/Pd atomic ratio is observed for some samples. We consider possible (nano)structural peculiarities responsible for this behaviour.  相似文献   

18.
The Pd/ceramic composite membrane made is reported in this paper. The thin palladium film was deposited on the surface of a porous ceramic substrate by the conventional and improved electroless plating technique, respectively. The rate of palladium deposition increases and especially the sensitization and activation steps in the conventional electroless plating process has been omitted by an improved technique.  相似文献   

19.
The deactivation of the Pd/Al2O3 catalyst used for the hydrodechlorination of tetrachloroethylene (TTCE) is caused by both the carbonaceous deposits and by the hydrogen chloride produced in the reaction. In this work, several regeneration procedures have been tested, concluding that the best procedure is the leaching with ammonia, followed by calcinations and reduction. This procedure leads to an important recovery of the initial activity. The catalyst regenerated with this treatment is even less prone to deactivation that the fresh catalyst.  相似文献   

20.
Thin Pd membranes were in situ deposited on macroporous stainless steel (MPSS) tubes using an improved electroless plating method consisting of material filling in the substrate pores, Pd plating on the filled substrate, and recovery and activation of the substrate pores. The Pd/MPSS composite membranes resulted from the filling materials of both aluminum hydroxide gel and Pd/aluminum hydroxide gel have been studied in detail and compared with each other. The hydrogen permeation mechanism through both membranes may be controlled by surface reactions, while the hydrogen permeation flux and activation energy for the membrane resulted from Pd/aluminum hydroxide gel are higher than these for the membrane resulted from aluminum hydroxide gel. In the case of the former membrane, which is almost pinhole free, the hydrogen permeation flux is as high as 0.302 mol/(m2 s) with a pressure difference of 100 kPa at 773 K. Good membrane stability is also proven by the unchanged membrane surface morphology, the steady hydrogen permeance, and the complete hydrogen selectivity. The deposition mechanism of the membrane has been proposed and interpreted in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号