首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
陈哲  谢鸿  严有为 《光学学报》2007,27(1):111-115
采用溶液燃烧法在600℃成功合成了(BaxMg)2/(x 1)Al10O17∶Eu2 (0.6≤x≤1.2)蓝色荧光粉,着重研究了基质阳离子Ba/Mg比值的变化对其晶体结构及发光特性的影响。结果表明,合成的产物为纯相,且随Ba/Mg比值的增加,样品的晶格参量逐渐增加;当Ba/Mg比增加时,发射光谱的强度明显增强,至Ba/Mg为0.9时达到最大值,然后随Ba/Mg比继续增大,发射光谱的强度反而下降;Ba/Mg比值减少,导致基质的晶场增强和电子云膨胀效应的发生,致使Eu2 发射主峰向长波方向移动。Eu2 的掺杂浓度对样品的发光性能有显著的影响,随Eu2 浓度增大,发光中心增多,Eu2 离子间相互作用增强,能量传递加快,发光强度逐渐增大,并达到一个最大值。此后,随Eu2 的浓度进一步增加,Eu2 之间的能量传递速率将超过发射速率,呈现浓度猝灭特性。  相似文献   

2.
采用高温固相法在1 100 ℃下合成了Eu3+掺杂的CdxZn1-xO发光材料.采用X射线衍射对所合成样品的结构进行了表征.分析了不同浓度Cd2+的掺杂对于样品发光及激发峰位置的影响.通过对荧光光谱的测试,表明Cd2+的引入使得体系的禁带宽度变窄,并且通过Cd2+掺杂浓度的变化,可以对样品的激发光谱峰值在380~410 nm进行调制,样品的发光以520 nm处的宽带发射为主,并没有明显的Eu3+的特征发射,表明基质与Eu3+之间的能量传递并不有效.在加入Li+作为电荷补偿剂之后,出现了来自Eu3+的特征发射,相应的发射光谱的发射主峰位于609 nm.样品380~410 nm的激发峰范围覆盖了紫外LED芯片的输出波长.因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料.  相似文献   

3.
Wu Y  Wang YS  He DW  Fu M  Chen ZM  Li Y  Miao F 《光谱学与光谱分析》2011,31(4):890-893
采用溶胶-凝胶法在Zn2SiO4基质中掺杂Eu3+,合成了红色荧光粉Zn2SiO4:Eu3+.通过样品的X射线衍射光谱、红外光谱、扫描电镜以及光致发光光谱的测试和表征,研究了Zn2SiO4:Eu3+的内部结构和发光特性.扣描电镜结果显示样品为球状荧光粉,颗粒直径为1~3μm.在395 nm激发下,样品在613 nm处发射出很强的红光.结合荧光光谱,分析了样品的退火温度,Eu3+的浓度,电荷补偿剂Li+的浓度对样品发光强度的影响.研究发现,红色荧光粉Zn2SiO4:Eu3+的发光强度随退火温度的升高而增加,发光强度随Eu3+和Li+浓度的增加先增大后减小.  相似文献   

4.
采用高温固相法在1100℃下合成了Eu3 掺杂的CdxZn1-xO发光材料。采用X射线衍射对所合成样品的结构进行了表征。分析了不同浓度Cd2 的掺杂对于样品发光及激发峰位置的影响。通过对荧光光谱的测试,表明Cd2 的引入使得体系的禁带宽度变窄,并且通过Cd2 掺杂浓度的变化,可以对样品的激发光谱峰值在380~410nm进行调制,样品的发光以520nm处的宽带发射为主,并没有明显的Eu3 的特征发射,表明基质与Eu3 之间的能量传递并不有效。在加入Li 作为电荷补偿剂之后,出现了来自Eu3 的特征发射,相应的发射光谱的发射主峰位于609nm。样品380~410nm的激发峰范围覆盖了紫外LED芯片的输出波长。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料。  相似文献   

5.
通过固相法合成LED用Zn-Mo1-ySiyO4:Eu3+x红色荧光粉(0.05≤x≤0.30,0≤y≤0.09),讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4:Eux3+荧光粉发光性质的影响.当烧结温度为800℃时,可以生成ZnMoO4纯相目标产物.由于荧光粉的结晶度和粒径随烧结温度的升高而增大,所以随着烧结温度的升高,样品的发光强度有所提高;当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强,说明在此体系中,当Eu3+取代Zn2+时,Na2CO3充当助熔剂的同时,Na+起到了电荷补偿作用.荧光光谱实验显示Zn1-xMo1-ySOyO4:Eux3+能够被393和464 nm的紫外光激发,在616 nm处发出强烈的红色荧光.当Eu3+掺杂量约为20%mol时,Zn1-xMo0.97Si0.03O4:Eux3+荧光粉在616 nm处的发光强度达到最大.在引入Si4+离子后能显著增强Zn1-xMoO4:Eux3+的发光强度,组成为Zn0.80 Mo0.97Si0.03O4:Eu0.203+.样品(激发峰值为393 nm)的荧光强度要比Y2O2S:Eu0.053+荧光粉的发光强度强2倍.所以这种荧光物质能够更好地适用于白光LED.  相似文献   

6.
夏威  张希艳  王细凤  肖志国 《发光学报》2013,34(9):1161-1166
采用高温固相法在还原气氛下合成了Sr5-x(PO4)2SiO4∶xEu2+磷灰石型荧光粉。通过XRD、PL、SEM对样品的晶体结构、激发和发射光谱以及形貌进行了表征。在Eu2+浓度较低时,Eu2+占据不同的晶体格位而形成两个发光中心,发射光谱具有双发射峰;随着掺杂浓度的增加,Eu2+之间的能量传递使黄光区域的发射峰强度逐步增强,并在x=0.075时达到最大值。发射光谱红移可能是Eu2+受晶场强度和能量传递共同作用的结果。考察了该材料在白光LED中的封装应用性能,其双发射峰有助于提升白光LED光源的显色性。  相似文献   

7.
通过固相法合成LED用Zn1-xMo1-ySiyO4∶Eu3+x红色荧光粉(0.05≤x≤0.30, 0≤y≤0.09), 讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4∶Eu3+x荧光粉发光性质的影响。 当烧结温度为800 ℃时, 可以生成ZnMoO4纯相目标产物。 由于荧光粉的结晶度和粒径随烧结温度的升高而增大, 所以随着烧结温度的升高, 样品的发光强度有所提高; 当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强, 说明在此体系中, 当Eu3+取代Zn2+时, Na2CO3充当助熔剂的同时, Na+起到了电荷补偿作用。 荧光光谱实验显示Zn1-xMo1-ySiyO4∶Eu3+x能够被393和464 nm的紫外光激发, 在616 nm处发出强烈的红色荧光。 当Eu3+掺杂量约为20% mol时, Zn1-xMo0.97Si0.03O4∶Eu3+x荧光粉在616 nm处的发光强度达到最大。 在引入Si4+离子后能显著增强Zn1-xMoO4∶Eu3+x的发光强度, 组成为Zn0.80Mo0.97Si0.03O4∶Eu3+0.20样品(激发峰值为393 nm)的荧光强度要比Y2O2S∶Eu3+0.05荧光粉的发光强度强2倍。 所以这种荧光物质能够更好地适用于白光LED。  相似文献   

8.
Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递   总被引:2,自引:0,他引:2       下载免费PDF全文
采用高温固相法合成了BaZnP2 01:Eu2 ,Mn2 荧光粉,并对其发光性质及Eu2 对Mn2 的能量传递机理进行了研究.Eu2 和Mn2 在380 am和670 nm的发射峰分别由Eu2 的5d-14f跃迁和Mn2 的4T1(4G)-6A1(6S)跃迁产生.Eu2 对Mn2 的发光有很强的敏化作用,根据Dexter电多极相互作用的能量传递概率公式,判断出BaZnP2O7中Eu2 对Mn2 的能量传递属于电偶极-电四极相互作用引起的共振能量传递.  相似文献   

9.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

10.
采用高温固相法合成了一种新型近红外发光材料Mg_(2-x)SnO_4∶xCr~(3+)。利用X射线粉末衍射仪对样品的结构进行了表征,证明所得到的荧光粉具有单一尖晶石结构,掺杂离子的加入并没有改变晶体结构。利用荧光光谱和荧光衰减光谱对荧光粉的发光性质进行了研究。当被470 nm的蓝光激发时,荧光粉在700 nm处出现一个尖锐的发射峰(R锐线)和中心发射在750 nm处的宽带发射峰,分别归属于Cr~(3+)的~2E→~4A_2和~4T_2(~4F)→~4A_2跃迁。研究不同浓度Cr~(3+)掺杂对样品发光性质的影响,发现样品的发光强度随着Cr~(3+)浓度的增加而增大。当Cr~(3+)掺杂浓度x=0.02时达到最大值,之后出现发光强度的猝灭,猝灭机理为多极相互作用。样品的荧光寿命随着Cr~(3+)掺杂浓度的增大逐渐减小,从而证明Cr~(3+)之间存在着能量传递现象。Mg_(2-x)SnO_4∶xCr~(3+)系列荧光粉还表现出了近红外长余辉发光性质。  相似文献   

11.
Ba_2B_2P_2O_(10):Eu~(3+)材料的光谱特性   总被引:1,自引:0,他引:1  
采用高温固相法合成了Ba2B2P2O10:Eu3+材料,并研究了材料的光谱特性。在400nm近紫外光激发下,材料的发射光谱由4组线状峰组成,峰值分别为600,618,627和660nm,分别对应Eu3+的5D0→7F1,7F2,7F3和7F4跃迁。研究了Eu3+掺杂浓度及电荷补偿剂对材料发射强度的影响,结果显示,随Eu3+掺杂浓度的增大,材料的发射强度增大,并未出现浓度猝灭效应,同时,添加电荷补偿剂可增强材料的发射强度。  相似文献   

12.
Ca4Y6Si6O25:Eu2+绿色荧光粉的发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
采用高温固相法合成了Ca4 Y6Si6O25:Eu2+绿色荧光材料.通过X射线衍射分析得知,Ca4Y6Si6O25属于六方晶系,具有P63/m(176)空间点群结构.测定了Eu2+的激发光谱和发射光谱.Ca4Y6Si6O25:Eu2+的激发光谱为350~450 nm的宽带谱,这与近紫外光LED芯片相匹配.发射光谱是峰值...  相似文献   

13.
Pan ZF  Liu S  Zhu CJ  Xu J  Liu WH  Wang LL 《光谱学与光谱分析》2011,31(11):2910-2913
采用高温固相反应法在1 200℃下制备了 Eu2+激活的BaSrMg( PO4)2高亮度白光荧光粉,并对其晶体结构和发光性能进行了研究.荧光光谱研究表明该荧光粉的发射光谱由两个谱带组成,其中心分别位于424和585 nm处,归结为Eu2+分别占据了基质中Sr2+,Ba2+格位而导致的4f 65d1→4f7电子跃迁.两个...  相似文献   

14.
采用高温固相反应法制备了Ba1.97Ca1-x(B3O6)2∶Eu2+,Mnx2+(x=0,0.03,0.06,0.15)荧光粉,研究了其相组成与荧光特性。结果表明,样品具有单相Ba2Ca(B3O6)2晶体结构。Eu2+同时占据Ba2+格位和Ca2+格位。在317 nm波长的紫外光激发下,Eu2+辐射出峰值在450 nm附近的宽谱蓝光。通过能量传递作用,Mn2+辐射峰值为600 nm左右的宽谱红光。蓝光和红光叠加形成色坐标为(x=0.371,y=0.282)的近白光发射。样品的激发光谱分布在250~400 nm的波长范围,有望在紫外激发的白光LED中获得应用。  相似文献   

15.
采用两步法成功合成了单一基质双光色Ba10-x(PO44(SiO42:xEu2+荧光粉,研究了稀土离子占据不同的晶格格位对荧光粉光谱特性的影响。结果表明:两步法合成的荧光粉发射光谱由414 nm的蓝光波带和504 nm绿光波带两种光色组成,而传统的高温固相法制备的荧光粉只有504 nm处的绿光发射。荧光粉发光性能与Eu2+离子在磷灰石晶体结构中占据的晶格位置关系十分密切。两步法荧光粉双光色的形成主要是由于在第一步氧化气氛合成过程中Eu3+离子取代了基质结构中的Ba和Ba两个格位的Ba2+离子;在第二步还原过程结束后,Eu2+离子仍然占据着两种格位,从而形成了两种具有不同配位环境的发光中心。此外,双发射峰的相对强度能够通过Eu2+离子对Ba格位的取代率而调节,进而实现光谱的调变。  相似文献   

16.
LnZr(BO3)2:Eu3+(Ln=Ba,Sr)的真空紫外光谱特性的研究   总被引:3,自引:3,他引:0  
采用高温固相法合成了Ba(1-x)SrxZr(BO3)2:Eu3 系列样品,样品Ba(1-x)SrxZr(BO3)2:Eu3 激发谱在130~170nm和230 nm区域有两个很强的吸收带,位于130~170nm的吸收带主要是硼酸盐基质的吸收;位于230nm附近的吸收主要是Eu3 电荷转移态的吸收.当在样品中以Al部分取代Zr时,电荷转移态的吸收明显增强,并且Ba(1-x)SrxZr(BO3)2:Eu3 发射强度也会明显增强;随着x的增大,硼酸盐基质的吸收强度减弱,基质吸收带的主峰值向低能方向移动了大约30 nm.样品Ba(1-x)SrxZr(BO3)2:Eu3 在147nm激发下,发射出主峰值位于616nm的强红光,对应Eu3 电偶极(5D0→7F2)跃迁发射.  相似文献   

17.
王肖芳  张弛  邓朝勇 《发光学报》2016,37(9):1037-1042
采用高温固相法制备Ca_(2-x)SnO_4:xEu~(3+)(x=0,0.001,0.005,0.01,0.015,0.02)发光材料,分别在空气和真空氛围中进行烧结,研究Eu3+掺杂浓度及基质中氧空位对样品发光性能的影响。随着Eu~(3+)离子浓度的增加,发射强度呈逐渐增大的趋势,主发射峰由两个分别位于614 nm和618 nm的峰逐步合为一个位于616nm的发射峰。在Ca_(2-x)SnO_4∶xEu~(3+)样品的激发光谱中,存在着200~295 nm的Eu~(3+)-O~(2-)电荷迁移带,随着Eu~(3+)离子浓度的增加,电荷迁移带的峰位由271 nm红移到286 nm。此外,在Eu~(3+)离子掺杂浓度相同的情况下,真空中烧结得到样品的发光强度是空气中烧结得到样品的2倍。这是由于在真空氛围中烧结产生的氧空位增加使得传导电子密度升高,导致发光强度增加。而且,氧空位的增加导致电子陷阱的增多,这使得Ca_(2-x)SnO_4∶xEu~(3+)样品的余辉性能得到了很大程度的提高。  相似文献   

18.
合成了七种不同掺杂比例的稀土高氯酸盐(铕掺镧)与2-噻吩甲酸-邻菲咯啉的固态配合物,对配合物进行了元素分析、稀土络合滴定、摩尔电导测定,确定了配合物组成为(Eu1-xLax)·L3·phen·1/2H2O(x=0·000~0·200,L为2-噻吩甲酸,phen为邻菲咯啉),并测定了配体及配合物的IR谱及荧光激发和发射光谱。摩尔电导数据表明,此类配合物为非电解质。红外光谱测定表明,配体2-噻吩甲酸羧基氧与稀土离子配位,配体1,10-邻菲咯啉两个氮原子与稀土离子配位。荧光光谱测定表明,Eu3 处于无反演对称中心格位上,Eu3 配合物发射强度增大。配合物中La3 对Eu3 的发光产生敏化增强效应,当La3 掺入量为0·005mol时敏化强度最大,随着La3 浓度的增大,对Eu3 的发光敏化强度降低。  相似文献   

19.
采用溶胶-凝胶法制备了不同浓度Eu3 掺杂的CeO2发光粉,样品粉末在紫外光激发下发出明亮的橙红色光.利用X射线衍射(XRD)、热重-差热分析(TG-DTA)和光致发光光谱(PL)对样品的结晶过程和发光性质进行了表征.XRD分析表明在0.2at.%~10at.%的Eu3 掺杂范围内,用溶胶-凝胶法合成的样品在500℃就结晶成纯相的CeO2:Eu3 多晶粉末.由于Ce4 和Eu3 离子半径十分接近,因而Eu3 在CeO2中具有较高的固溶度.PL激发谱中出现在300~390 nm的宽带激发峰起源于基质CeO2的吸收,电子吸收能量后,发生O2--Ce4 的电荷迁移,再将能量传递给Eu3 .PL发射谱显示Eu3 含量为6at.%的样品发光强度最强,随后出现浓度猝灭.导致发光出现浓度猝灭的机制是电偶极-电四极相互作用.样品烧结温度的升高,促使晶粒长大和结晶完整性提高,从而显著提高了CeO2:Eu3 粉末的发光强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号