首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of the anticancer complex trans-[PtCl(2)[(E)-HN==C(OMe)Me](2)] (trans-EE) with both single-stranded and double-stranded deoxyribonucleotides have been studied by HPLC and 2D [(1)H,(15)N] HMQC NMR spectroscopy and compared with those of cis-[PtCl(2)(NH(3))(2)] (cis-DDP). Reactions of trans-EE with the single-stranded oligonucleotides d(CCTCGCTCTC) and d(CCTGGTCC) proceed rapidly through solvolysis of the starting substrate and subsequent formation of G-N7/monochloro trans-EE adducts. The rate of reaction is comparable to that of formation of an adduct from trans-EE and the dinuclotide d(ApG). Quite unexpectedly, the double-helical duplexes, d(TATGGTACCATA)(2) and d(TATGGCCATA)(2), with no terminal G residues, are practically inert towards trans-EE, and only minor species (< 5 % as estimated from HPLC traces) appear during 24 h reaction time. However, the duplexes d[(CCTCGCTCTC). (GAGAGCGAGG)] and d(GATAGGCCTATC)(2), which contain both terminal and central G residues, undergo platination only at the terminal, solvent-exposed, G residues, thereby confirming that the interior of the duplex is not accessible to trans-EE due to steric hindrance. In contrast, cis-DDP was found to bind exclusively to the central GG pair in d(GATAGGCCTATC)(2).  相似文献   

2.
This paper reports on the chemistry of platinum complexes containing bidentate pyridine-carboxylate (pyAc = pyridin-2-yl-acetate and picEt = pyridine-2-ethylcarboxylate, ethylpicolinate) (N,O) ligands. The pyridine-2-acetate and ethylpicolinate ligands form six- and five-membered chelates, respectively, upon formation of the Pt-carboxylate bond. In all reactions with picEt with various platinum complex starting materials, spontaneous de-esterification of the pendant carboxylate ester occurs to give directly the chelates K[PtCl(2)(pic-N,O)]-trans-[Pt(pic-N,O)(2)] and SP-4,2-[PtCl(pic-N,O)(NH(3))] without any evidence of intermediates. The de-esterification is solvent dependent, and molecular modeling was used to explain this reaction. The reactions of the geometric isomers of [PtCl(pyAc-N,O)(NH(3))] with 5'-guanosine monophosphate, 5'-GMP, and N-acetyl-l-methionine, AcMet, were investigated by NMR spectroscopy. The objective was to ascertain by model chemistry the feasibility of formation of ternary DNA-Pt-protein adducts in biology. Model nucleotide and peptide compounds were formed in situ by chloride displacement giving [PtL(pyAc-N,O)(NH(3))](+) (L = 5'-GMP or AcMet). Competitive reactions were then examined by addition of the complementary ligand L. Sulfur displacement of coordinated 5'-GMP was slow. For SP-4,3-[Pt(AcMet)(NH(3))(PyAc-N,O)](+), a rapid displacement of the sulfur ligand by 5'-GMP was observed, giving SP-4,2-[Pt(5'-GMP-N7)(pyAc-N,O)(NH(3))](+).  相似文献   

3.
The reactions of the anticancer complex trans-[PtCl2{(E)-HN=C(OMe)Me}2] (trans-EE) with a series of ribo and deoxyribodinucleotides have been studied by HPLC and 2D [1H, 15N] HMQC NMR spectroscopy and compared with those of the inactive trans isomer of cisplatin, trans-[PtCl2(NH3)2] (trans-DDP). Reactions of trans-EE with r(ApG) and d(ApG) take place through solvolysis of the starting substrate and subsequent formation of trans G-N7/monochloro and G-N7/monoaqua adducts. Slowly, the monofunctional adducts evolve to a bifunctional adduct forming an unprecedented and unexpected A-N3/G-N7 platinum cross-link spanning two trans positions. For stereochemical reasons, trans platinum complexes cannot form N7/N7 cross-links between adjacent purines in di- or polynucleotides. For the reverse sequence r(GpA), no chelate structure was formed even after a two-week reaction. The reaction of trans-DDP with r(ApG) produces many more products than the analogous reaction with trans-EE. One of these products was identified as the A-N3/G-N7 trans-chelate.  相似文献   

4.
A detailed study on the reaction mechanism of trans-EE and trans-EE/Met Pt-containing anticancer drugs was carried out in order to rationalize the experimental kinetic data concerning the whole process leading to DNA platination.  相似文献   

5.
The interactions of [Pt(en)Cl(ACRAMTU-S)](NO3)2 (PT-ACRAMTU, en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) with adenine in DNA have been studied using a combination of analytical and high-resolution structural methods. For the first time, a cytotoxic platinum(II) complex has been demonstrated to form adducts in the minor groove of DNA through platination of the adenine-N3 endocyclic nitrogen. An acidic depurination assay was developed that allowed the controlled and selective (pH 2, 60 degrees C, 12 h) release of platinum-modified adenine from drug-treated nucleic acid samples. From the digested mixtures, three adducts were isolated by semipreparative reverse phase high-performance liquid chromatography and studied by electrospray ionization mass spectrometry (in-line LC-MS), variable-pH 1H NMR spectroscopy, and, where applicable, X-ray crystallography. The three species were identified as the N7 (A-I), N3 (A-II), and N1 (A-III) linkage isomers of [Pt(en)(ACRAMTU-S)(adenine)]3+ (A). Incubations carried out with the single- and double-stranded model sequences, d(TA)5 and d(TA)15, as well as native DNA indicate that the adduct profiles (A-I:A-II:A-IIIratios) are sensitive to the nature of the nucleic acid template. A-II was found to be a double-strand specific adduct. The crystal structure of this adduct has been determined, providing ultimate evidence for the N3 connectivity of platinum. A-II crystallizes in the triclinic space group P in the form of centrosymmetric dimers, {[Pt(en)(ACRAMTU-S)(adenine-N3)]2}6+. The cations are stabilized by a combination of adenine-adenine base pairing (N6...N1 2.945(5) A) and mutual acridine-adenine base stacking. Tandem mass spectra and 1H chemical shift anomalies indicate that this type of self-association is not merely a crystal packing effect but persists in solution. The monofunctional platination of adenine at its N7, N3, and N1 positions in a significant fraction of adducts breaks a longstanding paradigm in platinum-DNA chemistry, the requirement for nucleophilic attack of guanine-N7 as the principal step in cross-link formation. The biological consequences and potential therapeutic applications of the unique base and groove recognition of PT-ACRAMTU are discussed.  相似文献   

6.
Light-activation of metal ion complexes to cytotoxic species is of interest due to the potential use in anticancer therapy. Two platinum complexes, trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)] (3) and trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] (4) were irradiated with either UV (λ = 366 nm) or white fluorescent light and the various photochemical and photobiological phenomena were characterized. HPLC coupled to UV/Vis and MS detection was used to identify photochemical species resulting from irradiation of 4 with UV and white light. These studies showed that various Pt(IV) and Pt(II) products formed during the photolysis. The mass spectra of Pt(IV) complexes showed Pt ions in both the positive as well as the negative mode while Pt(II) complexes resulted in only positively charged Pt(III) ions. Since cellular DNA is considered to be a key target for platinum antitumor drugs, the irreversible platination of calf thymus DNA by the photoactivated Pt(IV) complexes was followed by Atomic Adsorption spectrometry (AAS). The effect of adding chloride or biological reducing agents glutathione (GSH) and ascorbic acid on the rates of DNA platination where also studied. Upon activation by light, both compounds show similar binding behaviour to DNA, but the rates of DNA platination for 3 were faster than for 4. Both chloride and GSH protected DNA from platination by the photoactivated compounds; consistent with the trapping of reactive aqua-Pt species. The presence of ascorbate increased the level of platinum bound to DNA for photoactivated 4 but not for 3. Without photoactivation, little or no DNA platination was observed, either with or without ascorbate or GSH. Cytotoxicity studies with two human cancer cell lines underline the photochemotherapeutic potential of these compounds. Striking is the increase in cytotoxic potency with the replacement of an ammine by a pyridine ligand.  相似文献   

7.
Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) has been used for investigating the influence of the sulfur containing amino acid L-methionine (L-Met) on the binding behavior of oxaliplatin (trans-R,R-diaminocyclohexane-(oxalato)platinum(II)) to 5'-GMP. L-Methionine competes with 5'-GMP for the platinum binding site and forms as well as 5'-GMP adducts with oxaliplatin. The formation of the prognosed complexes [Pt(DACH)(L-Met-S,N)]+ and [Pt(DACH)(5'-GMP)2]2- (DACH = 1,2-diaminocyclohexane) could be proved directly by using CE-ESI-MS. Furthermore, we could now bring forward proofs, that the coordination of 5'-GMP with oxaliplatin is inhibited by L-methionine and could show, that the 5'-GMP ligands of the [Pt(DACH) (5'-GMP)2]2- complex can be replaced slowly by L-methionine whereas methionine can not be replaced by GMP.  相似文献   

8.
非经典三铂核药物与DNA作用的理论研究   总被引:3,自引:0,他引:3  
利用分子力学、分子动力学和量子化学等计算方法研究了新型临床二期抗癌药物BBR3464([{trans-PtCl(NH3)2}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]4+)与寡聚DNA片段复合物的几何构型及其电子结构. 结果表明, 利用分子力学和分子动力学确定的复合物结构与实验的基本吻合. BBR3464为+4价高电荷铂药, 与两端的铂相连的两个Cl配体间的距离是2.74 nm, 这使得药物与DNA交联速度快, 形成远程的1,4-链间交联. 计算结果表明, BBR3464与DNA识别能力强, 结合稳定. 所形成的复合物中既有Pt-N7间较强的配位键, 也存在许多氢键、弱氢键及静电作用. 复合物中结合位点及结合位点外的嘌呤碱基的构象发生了不同程度的改变. 复合物结构特征说明, DNA在键合药物后其构型并未发生定域的链弯曲, 而是离域的嘌呤碱基的构象转化, 其对DNA所造成离域性损伤与经典的药物不同. DNA是铂抗肿瘤药物的靶点, 多点键合和离域性损伤的结构特征与BBR3464的独特生物活性和临床表现相关.  相似文献   

9.
The synthesis and X-ray structure (as the tetrahydrate) of the platinum(IV) complex trans,trans,trans-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] 3 are described and its photochemistry and photobiology are compared with those of the cis isomer cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] 4. Complexes 4 and 3 are potential precursors of the anticancer drug cisplatin and its inactive trans isomer transplatin, respectively. The trans complex 3 is octahedral, contains almost linear azide ligands, and adopts a layer structure with extensive intermolecular hydrogen bonding. The intense azide-to-platinum(IV) charge-transfer band of complex 3 (285 nm; epsilon=19 500 M(-1) cm(-1)) is more intense and bathochromically shifted relative to that of the cis isomer 4. In contrast to transplatin, complex 3 rapidly formed a platinum(II) bis(5'-guanosine monophosphate) (5'-GMP) adduct when irradiated with UVA light, and did not react in the dark. Complexes 3 and 4 were non-toxic to human skin cells (keratinocytes) in the dark, but were as cytotoxic as cisplatin on irradiation for a short time (50 min). Damage to the DNA of these cells was detected by using the "comet" assay. Both trans- and cis-diammine platinum(IV) diazide complexes therefore have potential as photochemotherapeutic agents.  相似文献   

10.
trans-[PtCl2(Am)(pip-pip)] x HCl complexes, where Am = ammine, methylamine and dimethylamine, react with ubiquitin to form 1:1 covalent adducts. The platinum complexes bind exclusively to Met1 of ubiquitin forming trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] adducts. These adducts are reactive towards nucleophiles and react with deoxyguanosine (dGMP) to form the ternary trans-[Pt(dGMP)(S-Met1-Ub) (Am)(pip-pip)] complex which is stable in water and even in the presence of excess glutathione (GSH). Reaction of trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] with GSH resulted in the rapid formation of the ternary complex trans-[Pt(GS)(S-Met1-Ub)(Am)(pip-pip)] which was not stable and slowly lost the platinum moiety; after 7 days the platinum moiety was completely removed and the native ubiquitin was regenerated.  相似文献   

11.
The crystal structure of the excised major DNA monoadduct, [Pt(en)(ACRAMTU-S)(dGuo-N7)]3+ ("dGuo*"; en = ethane-1,2-diamine; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, acridinium cation; dGuo = 2'-deoxyguanosine), of a platinum-acridine cytotoxic agent is reported. The adduct dGuo*, previously identified in enzymatic digests of native DNA treated with this drug, is partially deprotonated and dimerizes through formation of a rare GG- mismatch base pair, which is sandwiched between the planar chromophores of the acridine nonleaving groups linked to platinum. NMR evidence exists that indicates that the dimeric form persists in neutral aqueous solution. The one-dimensional pi-stack produced by the dimers in the solid state is reminiscent of a coordinative-intercalative DNA binding mode.  相似文献   

12.
Molecular mechanics and dynamics calculations have been used in conjunction with experimental data to study the effects of amine ligand bulk on the formation of both guanine and methionine complexes with platinum diamine compounds. The AMBER force field has been supplemented with previous modifications [Yao; et al. Inorg. Chem. 1994, 33, 6061-6077. Cerasino; et al. Inorg. Chem. 1997, 36, 6070-6079] and has been further modified to include parameters for platinum bound to the sulfur atom of methionine. Molecular mechanics calculations with this modified AMBER force field have suggested that a platinum complex with two sulfur-bound methionine ligands and a bulky diamine ligand (N,N,N',N'-tetramethylethylenediamine, Me(4)en) would have severe interligand clashes; such interligand clashes are less pronounced in bis(9-ethylguanine) complexes. Consistent with these observations, NMR studies with [Pt(Me(4)en)(D(2)O)(2)](2+) have indicated that guanine 5'-monophosphate reacts in a 2:1 guanine:platinum ratio while both methionine and N-acetylmethionine react with only a 1:1 stoichiometry. Methionine forms a chelate via the sulfur and nitrogen atoms whereas N-acetylmethionine forms a chelate via the sulfur and oxygen atoms. The oxygen of the latter chelate can be displaced by the addition of guanosine 5'-monophosphate, although complete displacement of the N-acetylmethionine was not observed.  相似文献   

13.
The hairpin-stabilized double-stranded oligonucleotides d(TATGGTATT4ATACCATA) (I) and d(TATAGTATT4ATACTATA) (II) were allowed to react with the three aquated forms of the antitumor drug cisplatin (cis-[PtCl2(NH3)2], 1) which are likely candidates for DNA binding, that is, cis-[PtC1(NH3)2(H2O)]+ (2), cis-[Pt(NH3)2(H2O)2]2+ (3), and its conjugate base cis-[Pt(OH)(NH3)2(H2O)]+ (4). The reaction between I and [Pt(NH3)3(H2O)]2+ (5) was also studied for comparison. All reactions were monitored by HPLC. The platination reactions of I and II were carried out in NaClO4 (0.1M) at 293 K and at a constant pH of 4.5 +/- 0.1 for 2, 3, and 5. The data relative to the platination by 4 were obtained from measurements in unbuffered NaClO4 solutions (0.1M) at a starting pH close to neutrality, where 3 and 4 are present in equilibrium. In this case, a fit function describing the pH-time curve allowed the determination of the actual concentrations of 3, 4, and the dihydroxo complex. The platination rate constants characterizing the bimolecular reactions between either I or II and 2, 3, and 4 were individually determined along with the rate constants for hydrolysis of the chloro-monoadducts and for the chelation reactions of the aqua-monoadducts. The reactivity of compounds 2-5, which have the general formula cis-[Pt(NH3)2(H2O)(Y)]2+/-, decreases in the order 3>4>5>2, that is, Y= H2O > OH- >NH3 > Cl-, which is the order of decreasing hydrogen-bond donating ability of Y. Deprotonation of 3 to 4 reduces the reactivity of the platinum complex only by a factor of approximately equals 2, and both complexes discriminate between the different purines of I and II in the same manner. Whereas 3 and 4 react approximately three times faster with the GG sequence of I than with the AG sequence of II, 2 shows a similar reactivity towards both sequences. In view of the well-established preferential binding of cisplatin to GG sequences of DNA in vivo and in vitro, this result suggests that the actual DNA platination species are derived from double hydrolysis of cisplatin.  相似文献   

14.
We describe a 1.2 A X-ray structure of a double-stranded B-DNA dodecamer (the Dickerson Dodecamer, DDD, [d(CGCGAATTCGCG)]2) associated with a cytotoxic platinum(II) complex, [{trans-Pt(NH3)2(NH2(CH2)6(NH3+)}2-mu-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}] (TriplatinNC). TriplatinNC is a multifunctional DNA ligand, with three cationic Pt(II) centers, and directional hydrogen bonding functionalities, linked by flexible hydrophobic segments, but without the potential for covalent interaction. TriplatinNC does not intercalate nor does it bind in either groove. Instead, it binds to phosphate oxygen atoms and thus associates with the backbone. The three square-planar tetra-am(m)ine Pt(II) coordination units form bidentate N...O...N complexes with OP atoms, in a motif we call the Phosphate Clamp. The geometry is conserved among the 8 observed phosphate clamps in this structure. The interaction appears to prefer O2P over O1P atoms (frequency of interaction is O2P > O1P, base and sugar oxygens > N). The high repetition and geometric regularity of the motif suggests that this type of Pt(II) center can be developed as a modular nucleic acid binding device with general utility. TriplatinNC extends along the phosphate backbone, in a mode of binding we call "Backbone Tracking" and spans the minor groove in a mode of binding we call "Groove Spanning". Electrostatic forces appear to induce modest DNA bending into the major groove. This bending may be related to the direct coordination of a sodium cation by a DNA base, with unprecedented inner-shell (direct) coordination of penta-hydrated sodium at the O6 atom of a guanine.  相似文献   

15.
Two homoleptic pyridyl-functionalized C,N-ortho-chelating aminoaryl platinum(II) complexes, cis-[Pt(eta(2)-C,N)] (3a,b), were prepared via an unconventional method involving the initial synthesis of a bromide-functionalized C,N-chelating aminoaryl platinum(II) precursor complex 8, to which subsequently pyridyl groups were attached via a Suzuki-Miyaura C-C coupling reaction. The electron-donating properties of the pyridyl nitrogen atoms of the resulting complexes (3a,b) were used in complexation reactions with monocationic NCN-pincer (NCN = [C6H3(CH2NMe2)(2-)2,6]-) platinum(II) (11a) and palladium(II) (12a) nitrate complexes [M(NCN)(NO3)], thereby obtaining four trimetallic coordination complexes 16-19. The difference in the pyridine-metal coordination behavior between platinum and palladium was studied by varying the ratios of the reagents and by variable-temperature NMR experiments. IR and Raman analyses of 11a and 12a were performed to determine the coordination behavior of the nitrate counteranion, and it was found that both NO3- and H2O coordinate to the metal centers. The crystal structure determinations of free pyridyl complex 3a, [Pt(NCN)(NO3)] (11a), and [Pt(NCN)(NO3)].(H2O) (11b), as well as the crystal structure of trisplatinum coordination complex 16, are reported.  相似文献   

16.
The bifunctional binding of the anticancer drug cisplatin to two adjacent nucleobases in DNA is modeled using density functional theory. Previous experimental studies revealed that cisplatin binding to adjacent guanine and adenine is sensitive to nucleobase sequence. Whereas AG 1,2-intrastrand cross-links are commonly observed, the analogous GA adducts are not known. This study focuses on understanding this directional preference by constructing a full reaction profile using quantum chemical simulation methods. Monofunctional and bifunctional cisplatin adducts were generated, and the transition states that connect them were located for the dinucleotides d(pApG) and d(pGpA), assuming that initial platination takes place at the guanine site. Our computer simulations reveal a significant kinetic preference for formation of the AG over the GA adduct. The activation free energies of approximately 23 kcal/mol for AG and approximately 32 kcal/mol for GA suggest that bifunctional closure is approximately 6 orders of magnitude faster for AG than for GA. A strong hydrogen bond between one of the ammine ligands of cisplatin and the 5' phosphate group of the DNA backbone is responsible for the stabilization of the transition state that affords the AG adduct. This interaction is absent in the transition state that leads to the GA adduct because the right-handed helix of the DNA backbone places the phosphate out of reach for the ammine ligand. We found only an insignificant thermodynamic difference between AG and GA adducts and conclude that the preference of AG over GA binding is largely under kinetic control. The puckering of the deoxyribose ring plays an important role in determining the energetics of the bifunctional platination products. Whereas the 3'-nucleoside remains in the native C2'-endo/C3'-exo form of B-DNA, the deoxyribose of the 5'-nucleoside always adopts the C2'-exo/C3'-endo puckering in our simulations. A detailed analysis of the energies and structures of the bifunctional adducts revealed that the observed sugar puckering patterns are necessary for platinum to bind in a relaxed coordination geometry.  相似文献   

17.
Oehlsen ME  Qu Y  Farrell N 《Inorganic chemistry》2003,42(18):5498-5506
A possible explanation for the low bioavailability of platinum antitumor compounds is their high reactivity with the sulfur-containing tripeptide glutathione (GSH; deprotonated GSH = SG). GSH is located in the intracellular matrix of the cell with a normal concentration of 5-10 mM. In vivo, only a small fraction of the administered drug will migrate into the cell, resulting in relatively high concentrations of GSH compared to that of the drug. The products of the reactions of [[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4) (BBR3464; 1,0,1/t,t,t, n = 6), [[trans-PtCl(NH(3))(2)](2)-mu-(H(2)N(CH(2))(6)NH(2))](NO(3))(2) (BBR3005; 1,1/t,t, n = 6), [[trans-PtCl(NH(3))(2)](2)-mu-(H(2)N(CH(2))(3)NH(2)(CH(2))(4)NH(2))]Cl(3) (BBR3571; 1,1/t,t-spermidine, n = 3, 4), and trans-[PtCl(2)(NH(3))(2)] (t-DDP) with reduced GSH in phosphate-buffered saline (pH 7.35) have been characterized by (1)H, (195)Pt, and (1)H(-)(15)N gradient heteronuclear single-quantum coherence NMR spectroscopy and high-performance liquid chromatography (HPLC) coupled with electrospray ionization time-of-flight mass spectrometry to determine likely metabolites of the complexes with GSH. Chemical shifts (NMR) and retention times (HPLC) established via analysis of the t-DDP profile served as a fingerprint to compare results obtained for the products afforded by the degradation of the polynuclear compounds by GSH. Identical kinetic profiles and chemical shifts between the metabolites and the t-DDP/GSH products allowed identification of the final product for the 1:2 Pt:GSH reaction as a dinuclear species [[trans-Pt(SG)(NH(3))(2)](2)-mu-SG], in which glutathione bridges the two platinum centers via only the sulfur atom.  相似文献   

18.
The reaction of bismuth(III) chloride with [PhCH(2)NMe(3)](2)[Fe(CO)(4)] at a ratio of 2:1 in acetonitrile yields the iron carbonyl-bismuth chloride adduct [PhCH(2)NMe(3)](2)[Bi(2)Cl(4)(&mgr;-Cl)(2){&mgr;-Fe(CO)(4)}] cleanly in high yield. The complex consists of two BiCl(3) groups bridged by an [Fe(CO)(4)](2)(-) unit. Two chloride ligands are shared between the Bi atoms, producing square-pyramidal coordination at bismuth and octahedral coordination at the iron center. The production of this complex represents the synthesis of a stable adduct of a highly nucleophilic metal carbonyl anion with a strongly Lewis acidic main group halide. The compound C(24)H(32)N(2)O(4)Bi(2)Cl(6)Fe crystallizes in the orthorhombic space group Pba2 (No. 32) with cell parameters a = 14.624(3) ?, b = 17.010(3) ?, c = 7.1990(10) ?, V = 1790.8(5) ?(3), and Z = 2.  相似文献   

19.
Reaction of [Bu(4)N](2)[Pd(2)Br(6)(Se(2)N(2))] with [14]aneS(4) results in eventual formation of Se(4)N(4); intermediates in this reaction include an air-sensitive insoluble material which reacts with [PtCl(2)(PMe(2)Ph)](2) to give the first example of a platinum adduct of Se(2)N(2) and with [Pd(2)Br(6)](2-) to regenerate the starting material.  相似文献   

20.
(SP-4-2)-Bis[(R)-(-)-2-aminobutanol-kappaN]dichloroplatinum(II) and (SP-4-2)-bis[(R)-(-)-2-aminobutanolato-kappa2N,O]platinum(II) are promising cytotoxic agents exhibiting a strongly pH-dependent rate of reaction with the DNA-modeling nucleotide guanosine 5'-monophosphate (GMP). This potential mode-of-action binding, directly correlating with cytotoxicity, is influenced by the intramolecular chelation of bifunctional aminoalcohol ligands which was examined by means of micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR). While NMR clearly proves the existence of equilibrium between the ring-opened and ring-closed species, no such transformation was observed under MEKC conditions. In a kinetic study performed by MEKC, the half-lives of GMP bound to the platinum complexes were determined and compared to the kinetic data acquired by capillary zone electrophoresis. An appreciable increase in binding in the presence of sodium dodecyl sulfate (SDS) micelles was explained in terms of activation of (SP-4-2)-bis[(R)-(-)-2-aminobutanol-kappaN]dichloroplatinum(II). This apparently takes place due to the shifting of the equilibrium towards the ring-opened species, induced by adduct formation between SDS and the platinum complex that was confirmed by electrospray ionization mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号