首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

2.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

3.
Complexation of ketoconazole (KET), a broad-spectrum antifungal drug, with β- and γ-cyclodextrins (CDs), heptakis (2,6-di-O-methyl)-β-CD (2,6-DM-β-CD), heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), 2-hydroxypropyl-β-CD (2HP-β-CD) and carboxymethyl-β-CD (CM-β-CD) was studied. The stability constants were determined by the solubility method at pH = 6 and for 2,6-DM-β-CD and CM-β-CD at pH = 5. At pH = 6, the stability constants increased in the order: TM-β-D < γ-CD < 2HP-β-CD < β-CD < CM-β-CD < 2,6-DM-β-CD. At pH = 5, due to the increased ionization of KET, the stability constant with CM-β-CD increased and with 2,6-DM-β-CD decreased. For complexes of KET with 2HP-β-CD and 2,6-DM-β-CD, the thermodynamic parameters of complexation were determined from the temperature dependence of the corresponding stability constants. For β–γ and TM-β-CD complexes, calculations using HyperChem 6 software by the Amber force field were carried out to gain some insight into the host–guest geometry.  相似文献   

4.
Two new spirostanol sapogenins (5β-spirost-25(27)-en-1β,2β,3β,5β-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1β,2β,3β,5β-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5β-spirost-25(27)-en-1β,3β-diol 1, (25S)-spirostan-1β,3β-diol 2, 5β-spirost-25(27)-en-1β,3β,4β,5β-tetrol 5, (25S)-spirostan-1β,3β,4β,5β-tetrol 6, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 7 and (25S)-spirostan-1β,2β,3β,4β,5β-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-galactopyranoside 9, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-arabinonoside 11, 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-galactoside 10 and 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1β,3β-diol 1 and 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity.  相似文献   

5.
The PESs of systems including deactivated silylenes (SiHHal, SiHal2, Hal = F, Cl, and 2-silaimidazol-2-ylidene, SiN2H2C2H2) and buta-1,3-diene have been studied using G3(MP2)//B3LYP method. Two major reaction channels, (2 + 1) and (4 + 1) cycloaddition reactions, leading to 2-vinylsiliranes and silacyclopent-3-enes, respectively, as well as [1,3]-sigmatropic rearrangements between 2-vinylsiliranes and the corresponding silacyclopent-3-enes, have been considered in detail. Reactivity of silylenes toward buta-1,3-diene decreases in the following series: SiHHal > SiHal2 > SiN2H2C2H2, which is reflected in increase of the reaction barriers for both cycloaddition reactions and in decrease of exothermicity of the formation of the corresponding products. The (4 + 1) cycloaddition is preferable for SiHal2 and SiN2H2C2H2 and can compete with (2 + 1) cycloaddition for SiHHal. [1,3]-Sigmatropic rearrangement is important for isomerization of 2-vinylsiliranes to the corresponding silacyclopent-3-enes for all systems studied, except the SiCl2 system.  相似文献   

6.
The complexation of NpO22+ and PuO22+ with dipicolinic acid (DPA) has been investigated in 0.1 M NaClO4 by spectrophotometry, microcalorimetry, and single crystal diffractometry. Formation of 1:1 and 1:2 (metal/ligand molar ratio) complexes of DPA with NpO22+ and PuO22+ were identified and the thermodynamic parameters were determined and compared with those of UO22+. All three hexavalent actinyl cations form strong 1:1 DPA complexes with slightly decreasing but comparable stability constants from UO22+ to PuO22+, whereas the stability constants of the 1:2 complexes (log β2) decrease substantially along the series (16.3 for UO2L22?, 15.17 for NpO2L22?, and 14.17 for PuO2L22? at 25 °C). The enthalpies of complexation for the 1:2 complexes become less exothermic from UO2L22? (?28.9 kJ mol?1), through NpO2L22? (?27.2 kJ mol?1), and to PuO2L22? (?22.7 kJ mol?1). The trends in the thermodynamic parameters are discussed in terms of the effective charge of the cations and the steric constraints in the structures of the complexes. In addition, the features of the absorption spectra, including the wavelength and intensity of the absorption bands, are related to the perturbation of the ligand field and the symmetry of the actinyl complexes.  相似文献   

7.
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro-/photo-)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ-MePyr)2Fe(NO)2]2− ( 2 , MePyr=3-methylpyrazolate) results in the formation of CO2-captured complex [(NO)2Fe(MePyrCO2)] ( 2-CO2 , MePyrCO2=3-methyl-pyrazole-1-carboxylate). Single-crystal structure, spectroscopic, reactivity, and computational study unravels 2-CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2-CO2 → [(NO)2Fe(μ-MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2-CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   

8.
The heptadentate Schiff base H3L reacts with cobalt(II) acetate in methanol to form the discrete dinuclear complex Co2L(OAc)2(OMe)(H2O)2 ( 1 ·2H2O). The reaction of 1 ·2H2O with NMe4OH·5H2O in methanol gives rise to displacement of the acetate by methanolate groups, yielding Co2L(OMe)3(H2O) ( 2 ·1H2O). Recrystallizations of the Schiff base, 1 ·2H2O and 2 ·H2O in different solvents, produce single crystals of H3L, 1 ·2.5H2O and 2 ·2MeOH, respectively. The crystal structures of 1 ·2.5H2O and 2 ·2MeOH show the cobalt atoms double bridged by and endogenous phenol oxygen atom and an exogenous methanolate oxygen donor, giving rise to Co2O2 cores with Co···Co distances of ca. 2.87 Å.  相似文献   

9.
2MgO·2B2O3·MgCl2·14H2O-7.8%H3BO3-H2O体系多温相关系研究   总被引:1,自引:0,他引:1  
研究了2MgO·2B2O3·MgCl2·14H20在不同温度下的7.8%H3BO3水溶液中的相转化产物及其溶解度.IR,XRD,TG及化学分析表明,相转化产物在0~22℃范围内为MgO·2B2O3·9H20;22~68℃为MgO·2B2O3·7.5H20;68~95℃为MgO·2B2O3·7H20;95~98.8℃为MgO·2B2O3·5H20;100~110℃为MgO·B2O3·3H20;110~120℃为2MgO·B2O3·2H20;120~170℃为2MgO·B2O3·1.5H20;170~200℃为2MgO·B2O3·H20.提出了相转化反应原理.  相似文献   

10.
A convenient method has been developed for the preparation of a variety of 2-mercaptobenzothiazoles from 2-haloanilines and CS2 mediated by metal sulfide. In this reaction, 2-haloanilines reacted with CS2 in the presence of Na2S?·?9H2O to form 2-mercaptobenzothiazoles. Na2S?·?9H2O functioned both as an activator of CS2 and as a base. Furthermore, NMR analysis was used to identify the different reaction mechanisms of 2-haloanilines and CS2 mediated by Na2S or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), which demonstrated that Na2S interacted only with CS2, while DBU reacted with both 2-iodoaniline and CS2.  相似文献   

11.
Pure SnO2, sulfated SnO2-SO4 2- and Pd supported on SnO2 and SnO2-SO4 2- were prepared from SnO2 precursor with high surface area, and used for CH4 deep oxidation. The catalysts were characterized by means of N2-BET, XRD, TG-DTA, XPS and TPD. SnO2-SO4 2- shows higher activity than SnO2, due to the presence of more active oxygen species, superacid sites and its higher BET surface area. Pd/SnO2 and Pd/SnO2-SO4 2- display essentially the same activity to each other, while it is much higher than the activity on SnO2 and SnO2-SO4 2-. The main reason is ascribed to the concerted action between Pd and the supports.  相似文献   

12.
A novel way of synthesis is developed for the Ba2+ selective neutral Ionophore 2a : 2,2′‐[1,2‐phenylenebis(oxyethane‐2,1‐diyloxy)]bis(N‐benzyl‐N‐phenylacetamide) and its methyl ( 2b ), buthyl ( 2c ), and hexyl ( 2d ) derivatives. Ba2+ selective electrodes based on Ionophores 2a – d are compared with those with commonly used Ionophore 1 : N,N,N′,N′‐tetracyclohexyl‐oxybis(o‐phenyleneoxy) diacetamide. It is shown that Ionophores 2a – d , particularly 2b , are superior for measurements of Ba2+ in the presence of Ca2+, and in acidic solutions. Segmented sandwich membrane studies suggest formation of complexes IL22+ for Ba2+, Ca2+ and Mg2+ ions with Ionophore 2b , while H+ ions apparently form complexes H2L2+. The values of the complex formation constants are consistent with the selectivity coefficients.  相似文献   

13.
The synthesis, characterization and thermogravimetric study of the adducts ZnCl2·2Imi, ZnBr2·2Imi, CdCl2·Imi, CdCl2·2Imi, CdBr2·2Imi, CdBr2·3Imi, CdI2·2.5Imi, HgCl2·2Imi, HgBr2·1.5Imi and HgI2·1.5Imi (Imi = imidazole) is reported. The following sequence of thermal stability is observed for the synthesized adducts: Zn>Hg>Cd. It is also verified that larger cations, as well as larger anions, result in a smaller number of imidazole molecules in the coordination sphere of the considered cation and that hard acids exhibit stronger bonds to imidazole than soft acids, and this fact is reflected in the thermal stability sequence. ZnCl2·2Imi behaves as a non-electrolyte in acetonitrile and ethanol, whereas ZnBr2·2Imi is a non-electrolyte in acetonitrile and a 1:1 electrolyte in ethanol. CdI2·2.5Imi is a non-electrolyte in acetonitrile and a 1:2 electrolyte in ethanol.  相似文献   

14.
A model was proposed to describe the exchange reaction of sodium by lithium in P2 crystals, it was based first on the formation of nucleation centers and then on the growth of O2 domains in P2 crystals from these nucleation centers. This study has shown that depending on the ratio between the growing and nucleation speeds, O2, O6 or faulted structures are obtained and that this model allows a good analysis of the exchange process. XRD patterns simulation and their comparison with that of experimental O2-LiCoO2 have shown that there was almost no defects in the O2-LiCoO2 structure obtained by ion exchange in water. Therefore, this study has shown that the growth of the O2 domains in the P2-Na0.7CoO2 crystals is faster than the formation of nucleation centers.This P2-Na0.7CoO2→O2-LiCoO2 exchange reaction was also studied in situ by X-ray diffraction; simulations of key XRD patterns by P2-O2 intergrowths were also achieved. It was shown, in good agreement with the simulations, that the growth of O2 domains was faster than the formation of the nucleation centers and kinetically activated by a P2-Na0.70CoO2→P2*-Na∼0.50CoO2 phase transition. For those reasons, the P2-Na0.70CoO2→O2-LiCoO2 exchange reaction in water leads to an O2 phase, with an almost ideal packing.  相似文献   

15.
The new scandium(III) carbodiimides Sc2(CN2)3 and Sc2O2(CN2) were prepared by solid-state metathesis reactions between Li2(CN2) and ScCl3 and, regarding Sc2O2(CN2), Sc2O3 was added. The X-ray powder diffraction pattern refinements lead to a trigonal-rhombohedral (R3 c) crystal system for Sc2(CN2)3 and to an orthorhombic (Immm) crystal system for Sc2O2(CN2). The structure of Sc2(CN2)3 is isotypic to the well-known rare earth carbodiimides RE2(CN2)3 with the smaller cations RE = Tm, Yb, and Lu, whereas Sc2O2(CN2) is not isotypic to the known RE2O2(CN2) (RE = Y, La, Ce–Gd, except Pm) compounds. Both crystal structures are represented by layered arrangements of scandium, respectively scandium and oxide, alternating with carbodiimide layers.  相似文献   

16.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

17.
Preparation and Crystal Structure of the Pnictide Oxides Na2Ti2As2O and Na2Ti2Sb2O Na2Ti2As2O and Na2Ti2Sb2O were synthesized in form of very easily hydrolysed metallic-grey powders by reaction of Na2O and TiAs resp. TiSb in sealed tantalum tubes under argon. The tetrahedral bodycentered crystallizing compounds from a modified anti-K2NiF4 structure type [1] (also called Eu4As2O-type [2,3]), space group I4/mmm (no. 139), with the lattice constants for Na2Ti2As2O: a = 407.0(2) pm, c = 1528.8(4) pm and for Na2Ti2Sb2O: a = 414.4(0) pm, c = 1656.1(1) pm. Magnetic measurements of powder samples of Na2Ti2Sb2O show antiferromagnetic interaction within the Ti—O-layers. Superconductivity was not found by ac-shielding method down to 4 K.  相似文献   

18.
Density functional theory studies on a series of Cp2Co2E2 derivatives (E = S and PX; X = H, Cl, OH, OMe, NH2, NMe2) predict global minimum butterfly structures with one Co-Co bond for the “body” of the butterfly and four Co-E bonds at the edges of the “wings” of the butterfly. Tetrahedrane structures with both Co-Co and E-E bonds are higher in energy for Cp2Co2S2 and Cp2Co2(PH)2 and are not found in the other systems. This differs from the corresponding Fe2(CO)6S2 and Fe2(CO)6(PX)2 derivatives where tetrahedrane structures are predicted to be the lowest energy structures for all cases except X = NR2 and OH and such a tetrahedrane structure is found experimentally for Fe2(CO)6S2. The butterfly structures for the Cp2Co2E2 derivatives are of two types. For Cp2Co2(PX)2 (X = H, OH, OMe, NH2, NMe2) the lowest energy structures are unsymmetrical butterflies Cp2Co2(P)(PX2) with two X groups on one phosphorus atom and a lone pair on the other (naked) phosphorus atom. Related low-energy unsymmetrical butterfly Fe2(CO)6(P)(PX2) structures, not observed in previous theoretical studies, are now found for the corresponding Fe2(CO)6(PX)2 derivatives. Symmetrical butterfly singlet diradical structures with one X group on each phosphorus atom in relative cis or trans positions are also found for the Cp2Co2(PX)2 derivatives and are the global minima for Cp2Co2(PCl)2 as well as Cp2Co2S2. In all cases the cis structures are of lower energy than the corresponding trans structures. Rhombus structures having neither Co-Co nor E-E bonds are also found for all of the Cp2Co2(PX)2 derivatives but always at higher energies than the butterfly structures, ranging from 17 to 29 kcal/mol above the global minima.  相似文献   

19.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   

20.
Three diiron and tetrairon azadithiolate complexes as models for the active site of [FeFe] hydrogenase were prepared. Reaction of complex Fe2(SCH2OH)2(CO)6 and NH2CH2CH2CH2OCH3 resulted in the diiron azadithiolate hexcarbonyl complex Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)6 ( 1 ) in moderate yield. Furthermore, treatment of complex 1 with mono phosphine ligand PPh3 and diphosphine ligand Ph2PCH2CH2PPh2 in the presence of decarbonylation reagent Me3NO · 2H2O yielded the phosphine‐substituted azadithiolate complexes Fe2[(SCH2)2NCH2CH2CH2OCH3]CO)5(PPh3) ( 2 ) and {Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)5}2(Ph2PCH2CH2PPh2) ( 3 ) respectively. The new complexes 1 – 3 were fully characterized by elemental analysis, IR, 1H, 13C, 31P NMR spectroscopy and X‐ray crystallography. It is worthy to note that the crystallographic studies show the unusual difference of the methoxypropanyl substituent on the N atom of complexes 1 and 2 , largely because of the affection of phosphine ligand PPh3. In addition, complex 1 was found to be a catalyst for H2 production under electrochemical condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号