首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ABSTRACT

Interaction forces between solid surfaces are often mitigated by adsorbed molecules that control normal and friction forces at nanoscale separations. Molecular dynamics simulations were conducted of opposing semi-ordered monolayers of united-atom chains on sliding surfaces to relate friction and normal forces to imposed sliding velocity and inter-surface separation. Practical examples include adsorbed friction-modifier molecules in automatic transmission fluids. Friction scenarios in the simulations had zero, one, or two fluid layers trapped between adsorbed monolayers. Sliding friction forces increased with sliding velocity at each stable separation. Lower normal forces were obtained than in most previous nanotribology molecular simulations and were relatively independent of sliding speed. Distinguishing average frictional force from its fluctuations showed the importance of system size. Uniform velocities were obtained in the sliding direction across each adsorbed film, with a gradient across the gap containing trapped fluid. The calculated friction stress was consistent with measurements reported using a surface forces apparatus, indicating that drag between an adsorbed layer and trapped fluid can account sufficiently for sliding friction in friction modifier systems. An example is shown in which changes in molecular organisation parallel to the surface led to a large change in normal force but no change in friction force.  相似文献   

3.
段芳莉  王明  刘静 《物理学报》2015,64(6):66801-066801
应用大规模分子动力学方法, 模拟了锥形探头在非晶态聚合物薄膜表面的滑动摩擦过程, 研究了摩擦导致的聚合物薄膜表层微观结构改变, 以及探头与基体间黏着作用、滑动速度和分子链长度对基体表层微观结构改变的影响. 当探头与基体之间为黏着作用时, 摩擦导致基体表面滑痕区域的键取向沿滑动方向重新取向, 导致表层分子链回转半径沿滑动方向伸长, 并且这些表层微观结构的改变程度随滑动速度的减小而增大. 在摩擦导致结构改变的过程中, 链端单体和链中单体的贡献作用不同, 形成了不同的分子链拉伸变形机制. 当样本缠结度较大或探头滑动速度较小时, 相比于链中单体, 探头对链端单体的拖曳作用使更多分子链发生拉伸变形. 研究还发现, 在探头与聚合物薄膜系统中, 使薄膜表层微观结构发生改变是摩擦能量耗散的重要途径.  相似文献   

4.
We studied the layer-by-layer collapse of molecularly thin films of a model lubricant confined between two atomically smooth substrates. The dynamics of the consecutive expulsion of four molecular layers were found to slow down with decreasing film thickness but showed no evidence for confinement-induced solidification. Using a hydrodynamic model, we show that the sliding friction of liquid layers on top of the solid substrates is approximately 18 times higher than the mutual friction between adjacent liquid layers. The latter was independent of film thickness and in close agreement with the bulk viscosity.  相似文献   

5.
We use molecular dynamics simulations to study thermal sliding of two nanostructured surfaces separated by nanoscale water films. We find that friction at molecular separations is determined primarily by the effective free energy landscape for motion in the plane of sliding, which depends sensitively on the surface character and the molecular structure of the confined water. Small changes in the surface nanostructure can have dramatic effects on the apparent rheology. Whereas porous and molecularly rough interfaces of open carbon nanotube membranes are found to glide with little friction, a comparably smooth interface of end-capped nanotubes is effectively stuck. The addition of salt to the water layer is found to reduce the sliding friction. Surprisingly, the intervening layers of water remain fluid in all cases, even in the case of high apparent friction between the two membranes.  相似文献   

6.
The dissipative processes that occur during sliding friction through the spontaneous formation of specific surface layers and provide the effect of no-wear friction are studied. The dynamic state of these layers is analyzed with allowance for high plastic strains. The micromechanism of formation of a two-phase structure in the surface layers is examined by the molecular dynamics method. The behavior of the system during no-wear friction is estimated in terms of thermodynamics. The results obtained can be used to predict the effect of no-wear friction in a given range of applied loads.  相似文献   

7.
Dynamics of hairpin vortices and polymer-induced turbulent drag reduction   总被引:1,自引:0,他引:1  
It has been known for over six decades that the dissolution of minute amounts of high molecular weight polymers in wall-bounded turbulent flows results in a dramatic reduction in turbulent skin friction by up to 70%. First principles simulations of turbulent flow of model polymer solutions can predict the drag reduction (DR) phenomenon. However, the essential dynamical interactions between the coherent structures present in turbulent flows and polymer conformation field that lead to DR are poorly understood. We examine this connection via dynamical simulations that track the evolution of hairpin vortices, i.e., counter-rotating pairs of quasistreamwise vortices whose nonlinear autogeneration and growth, decay and breakup are centrally important to turbulence stress production. The results show that the autogeneration of new vortices is suppressed by the polymer stresses, thereby decreasing the turbulent drag.  相似文献   

8.
A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.  相似文献   

9.
The behaviour patterns of staircase dynamic response to structure-borne sound are given through analysis of two-dimensional models. Typical models of this kind include angular discontinuities which represent the intersection line between the horizontal slabs and the stair's slope. Numerical examples illustrate the effect of elastic isolation layers on the solid-borne transmission loss between the stairs and the other parts of the building, the strong coupling between the stairs and the building caused by substitution of the elastic isolation layers by rigid sound bridges, the dependence of the dynamic response of the staircase on frequency, and the coupling between the longitudinal and flexural waves due to the aforementioned angular discontinuities of the staircase system.  相似文献   

10.
Summary In this paper we analyse, with the path integral method, the diffusion of a quantum heavy particle moving in a strongly corrugated periodic potential both in the case when the particle is interacting with a thermal bath of phonons or of electrons. In the first case, the integration over the phonon degrees of freedom is performed exactly and in the large mass limit of the heavy particle it gives rise to an ohmic effective action which includes a nonlocal self-interacting term whose strength is the classical friction coefficient. In the second case, the integration over the electronic degrees of freedom is more difficult; we are able to derive an approximate effective action for the heavy particle in two different limiting cases: i) arbitrary large coupling between heavy particle and electrons and linear dissipation; ii) weak coupling and nonlinear dissipation. In i) we obtain an effective action for the particle equal to that found for the phonons but with a friction coefficient given by that of a classical heavy particle in a fermionic bath. In ii) we obtain a nonlinear, but still ohmic, dissipative term. Using an instanton approach we evaluate the mobility (and the diffusion coefficient) of the particle, whose temperature dependence shows a crossover from diffusive to localized behaviour at a critical value of the friction. Finally we discuss whether the electronic and phononic frictions can reach such a critical value. To speed up publication, the authors have agreed not to receive proofs which have been supervised by the Scientific Committee.  相似文献   

11.
石墨烯薄膜作为一种二维材料,是提高微/纳机电系统(MEMS/NEMS)摩擦力学性能的优异润滑剂.为了探究基底材料和石墨烯层数对其减磨性能的影响,本文通过在不同基底制备了不同层数的石墨烯涂层,利用原子力显微镜(AFM)实验和分子动力学(MD)仿真结合的方法,研究了石墨烯层数对减磨效应的影响.并且通过建立不同层数石墨烯涂层的摩擦性能分析模型,探究出石墨烯层间滑移是产生减磨的主要因素.结果表明:在不同载荷下,石墨烯涂层对硅基底和铜基底均有优异的减磨效果,摩擦力随着石墨烯层数的增加逐渐降低,当石墨烯层数大于10层时,达到最优99.3%的减磨效果.通过仿真分析发现,随着层数增加,石墨烯与基底的干摩擦转变为石墨烯的层间摩擦,并产生层间剪切滑移,石墨烯层间滑移是导致多层石墨烯优异减磨性能的主要因素.  相似文献   

12.
采用分子动力学方法,模拟了在两块石英基板上由脂肪酸(C15H31COOH)组成的单层Langmuir-Blodgett (LB)膜间的摩擦特性,探究了超薄膜在滑动过程中的摩擦和结构机理.得出对于单层LB膜在滑动过程中,在速度小于60m/s时,随着速度的增大,其剪切压增大;在速度大于60 m/s时,剪切压随速度的增加而减小.其链的倾斜角随着滑动速度的增加而减小.单层膜内的分子之间以氢键方式形成了较大的分子簇,由此导致了剪切压呈现较长的周期性,但在单层膜之间无氢键形 关键词: 分子动力学模拟 朗缪尔布洛杰特膜 纳米摩擦 氢键  相似文献   

13.
A single-degree-of-freedom system with the parallel presence of a linear spring, a viscous damper and a contact dry friction device is studied here. The mass may slide or stick on the belt when the driver moves periodically or at a constant speed. We derive closed-form solutions according to a more complete two-phase formulation, and some interesting behaviours of the considered system are displayed. For the non-damping oscillator belt with fixed, we offer closed-form formulae for estimating the maximum displacement and the minimum driving speed amplitude needed to prevent sticking. Two friction laws are considered. For the Coulomb friction system, the positive damping term suffices to avoid the climb motion of the mass slider. We also investigate the friction behaviour of the mass slider under the influence of the friction force bound on mass speed, whose curve has negative slope when the mass speed is less than a certain value vmin. For the speed-dependent friction system we identify a critical speed denoted by v*. According to the qualitative analysis in the phase plane we give simple criteria of the parameter values for stable equilibrium point as well as for stable limit cycle. When v varies from vv* to v<v*, subcritical Hopf bifurcation occurs. For the latter case the mass slider undergoes a slide-stick motion, but by increasing the driving speed the slide-stick motion can be avoided.  相似文献   

14.
We present a revision to the well known Störmer–Verlet algorithm for simulating second order differential equations. The revision addresses the inclusion of linear friction with associated stochastic noise, and we analytically demonstrate that the new algorithm correctly reproduces diffusive behaviour of a particle in a flat potential. For a harmonic oscillator, our algorithm provides the exact Boltzmann distribution for any value of damping, frequency and time step for both underdamped and overdamped behaviour within the usual stability limit of the Verlet algorithm. Given the structure and simplicity of the method, we conclude that this approach can trivially be adapted for contemporary applications, including molecular dynamics with extensions such as molecular constraints.  相似文献   

15.
A. Tomala  Manish Roy  F. Franek 《哲学杂志》2013,93(29):3827-3843
Transition metal dichalcogenides with a layered structure are well known for their self-lubricating properties, particularly in a vacuum or dry atmosphere. The macrotribological properties of these films have been studied extensively. However, the tribological behaviour of these films in the nanonewton load range has hardly been reported. Study of tribological properties with load in the nanonewton range is required for applications related to microelectromechanical systems or nanoelectromechanical systems. In view of the above, the hardness, surface force, friction force, etc. of Mo–Se–C films were investigated at an applied load in the nanonewton range using a nanoindenter and atomic force microscopy. The effect of carbon content, applied load and scanning speed on the friction coefficient was determined. Data pertaining to topography, lateral force and pull-off force of various surfaces are illustrated. The observed nanotribological behaviour of these films is analysed in the light of their nanohardness. The results indicate that the friction force of all the films is very low and in general dependent on surface force. However, a film having the highest carbon content exhibits the maximum friction force. With increasing carbon content of the films tested, the hardness increases and wear decreases. The above results pertain to investigations under ambient conditions.  相似文献   

16.
The response of a granular material during a stop-and-go shear experiment is investigated using an annular shear cell and silicagel powders of different particle sizes. The experimental results are examined on the basis of the Dieterich-Rice-Ruina model for solid friction. In addition to making this analogy with solid friction, we describe a new instability that is observed when restarting shear, where the powder bed is found to slip and compact for short hold times but only dilates for long hold times. The minimum hold time to restore a non-slip behaviour has been investigated for different size particles and normal loadings. The observed dependencies show analogies between this behaviour and the sliding rearrangements seen above the stick-slip threshold.  相似文献   

17.
Superlubricity of graphite   总被引:1,自引:0,他引:1  
Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of "superlubricity" [Phys. Rev. B 41, 11 837 (1990)]].  相似文献   

18.
We study long-term behaviour of air temperature, wave heights and wind speed time series recorded for the period 1993–1997 at a meteo-marine station located in the Adriatic Sea. The scaling analysis shows that fluctuations of air temperature display long-range autocorrelations, while those for wave heights show a more complex behaviour, crossing over from a persistent regime at intermediate time scales (up to about 20 days) to an anti-persistence behaviour at longer times. Furthermore, the crosscorrelations of their records are found to be large, with a covariance of about -0.3 (indicating anti-crosscorrelations) within the full 5-years period, giving a quantitative measure of the actual coupling between the two data sets. Wind speed fluctuations are found to be strongly crosscorrelated (about 0.6) with those of wave heights, indicating as expected that wind is the main driving force for wave height fluctuations.  相似文献   

19.
Pavement temperature influence on close proximity tire/road noise   总被引:1,自引:0,他引:1  
The aim of this work is to analyze the influence of the surface temperature on the acoustical behaviour of a semidense asphalt pavement located in an urban area. The sound levels emitted by the interaction between a reference tire and the asphalt pavement at different surface temperatures were measured with the trailer Tiresonic Mk4 LA2IC-UCLM rolling at a speed of 50 km/h. The analysis of the results shows that increasing pavement temperature leads to a reduction in the close proximity sound levels assessed at a rate of 0.06 dB(A)/°C. Moreover, spectral analysis confirms that both the mechanisms associated with vibration and impacts and those related to the friction and adhesion between tire and pavement in the contact patch could be affected by the variation of the surface temperature.  相似文献   

20.
4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based copolyimides were synthesized and the tribological properties of the copolyimides with different heat histories were studied at different temperatures. Fluoride-containing polyimide (PI) showed better thermal stability, decreased friction coefficients, and postponed the consequence of friction variation, which depended on temperature, than nonfluorinated PI. Thermal treatments seemed to increase the friction coefficients of copolyimides, and reduced the tensile strengths of the materials. The effects of applied load (P) and sliding speed (V) on tribological behaviors of thermally treated copolyimides were also examined and the variations of friction coefficient depending on PV values were investigated for clear understanding of its relationship between PV value and friction coefficient with different thermal treating time. Distortions of net structures of the chains and molecular motion contributed to variations of tribological properties of thermal treated copolyimides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号