首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A molecular dynamics simulation of the folding of a short alanine-based helical peptide of 17 residues with three Glu...Lys (i, i + 4) salt bridge pairs, referred to as the AEK17 peptide, was carried out. The simulation gave an estimated simulation folding time of 2.5 ns, shorter than 12 ns for an alanine-based peptide of 16 residues with three Lys residues only, referred to as the AK16 peptide, simulated previously. After folded, the AEK17 peptide had a helical content of 77%, in excellent agreement with the experimentally determined value of 80%. An examination of the folding pathways of AEK17 indicated that the peptide proceeded via three-turn helix conformations more than the helix-turn-helix conformation in the folding pathways. An analysis of interactions indicated that the formation of hydrogen bonds between Lys residue side chains and backbone carbonyls is a major factor in the abundant conformation of the three-turn helix intermediate. The substitution of three Ala with Glu residues reduces the extent of hydrophobic interaction in alanine-based AK peptides with the result that the breaking of the interactions of Lys epsilon-NH3+(side chain)...C=O(backbone) is a major activation action for the AEK17 to achieve a complete fold, in contrast to the AK16 peptide, in which breaking non-native hydrophobic interaction is the rate-determining step.  相似文献   

2.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

3.
The role of the small exterior hydrophobic cluster (SEHC) in the strand region of the N‐terminal β‐hairpin of ubiquitin on the structural stability and the folding/unfolding kinetics of the protein have been examined. We introduce a Phe→Ala substitution at residue 4 in the strand region of the N‐terminal β‐hairpin of the ubiquitin. A peptide with the same amino acid sequence as the first 21 residues of the mutated ubiquitin has also been synthesized. The F4A mutation unfolds the hairpin structure of the peptide segment without disruption of the turn. The same mutation does not seem to affect the overall structure, but the stability of the mutated full‐length protein decreases by approx. 2 kcal/mol. Kinetically, the entire hairpin structure is implicated in the transition state during folding of the wild type protein. The rate of refolding is retarded by the F4A mutation in ~80% of the protein molecules. The F4A substitution also increases the unfolding rate of the protein by 10 fold. Thus the hydrophobic side‐chain of Phe‐4 not only contributes to the stability of the hairpin, but also to the stability of the entire protein by forming a cluster together with the hydrophobic residues on the C‐terminal strand.  相似文献   

4.
The folding mechanism of the G29A mutant of the B-domain of protein A (BdpA) has been studied by all-atom molecular dynamics simulation using AMBER force field (ff03) and generalized Born continuum solvent model. Started from the extended chain conformation, a total of 16 simulations (400 ns each) at 300 K captured some early folding events of the G29A mutant of BdpA. In one of the 16 trajectories, the G29A mutant folded within 2.8 A (root mean square) of the wild-type NMR structure. We observed that the fast burial of hydrophobic residues was the driving force to bring the distant residues into close proximity. The initiation of the helix I and III occurred during the stage of hydrophobic collapse. The initiation and growth of the helix II was slow. Both the secondary structure formation and the development of the native tertiary contacts suggested a multistage folding process. Clustering analysis indicated that two helix species (helices I and III) could be intermediates. Further analysis revealed that the hydrophobic residues of partially folded helix II formed nativelike hydrophobic contacts with helices I and III that stabilized a nativelike state and delayed the completion of folding of the entire protein. The details of the early folding process were compared with other theoretical and experimental studies. It was found that a nativelike hydrophobic cluster was formed by residues including F(30), I(31), L(34), L(44), L(45), and A(48) that prevented further development of the native structures, and breaking the hydrophobic cluster like this one contributed to the rate-limiting step. This was in complete agreement with the recent kinetic measurements in which mutations of these residues to Gly and Ala substantially increased the folding rates by as much as 60 times. Apparently, destabilization of nonnative states dramatically enhanced the folding rates.  相似文献   

5.
Aromatic residues are frequently found in helical and beta-barrel integral membrane proteins enriched at the membrane-water interface. Although the importance of these residues in membrane protein folding has been rationalized by thermodynamic partition measurements using peptide model systems, their contribution to the stability of bona fide membrane proteins has never been demonstrated. Here, we have investigated the contribution of interfacial aromatic residues to the thermodynamic stability of the beta-barrel outer membrane protein OmpA from Escherichia coli in lipid bilayers by performing extensive mutagenesis and equilibrium folding experiments. Isolated interfacial tryptophanes contribute -2.0 kcal/mol, isolated interfacial tyrosines contribute -2.6 kcal/mol, and isolated interfacial phenylalanines contribute -1.0 kcal/mol to the stability of this protein. These values agree well with the prediction from the Wimley-White interfacial hydrophobicity scale, except for tyrosine residues, which contribute more than has been expected from the peptide models. Double mutant cycle analysis reveals that interactions between aromatic side chains become significant when their centroids are separated by less than 6 A but are nearly insignificant above 7 A. Aromatic-aromatic side chain interactions are on the order of -1.0 to -1.4 kcal/mol and do not appear to depend on the type of aromatic residue. These results suggest that the clustering of aromatic side chains at membrane interfaces provides an additional heretofore not yet recognized driving force for the folding and stability of integral membrane proteins.  相似文献   

6.
The coiled-coil, which consists of two or more interwoven amphiphilic alpha-helices, is formed by sequences that have a characteristic heptad repeat (abcdefg) where a and d are hydrophobic residues. Most efforts to elucidate the origins of coiled-coil pairing selectivity have focused on electrostatic interactions among side chains that flank the core (positions e and g) and on polar side chains that occur occasionally at core positions. We have used phage display to explore another source of coiled-coil specificity: steric matching among nonpolar side chains in the core. We introduced a destabilizing Leu-->Ala mutation into the core of one helix in a known heterodimer and then screened a phage-based library of potential partner helices in search of compensating mutations. We identified a new heterodimer pair (30 residues/helix) that is comparable in stability to the GCN4-p1 homodimer (33 residues/helix). Furthermore, the Leu-->Ala mutant shows specificity for its phage-derived partner over the original partner despite their similar sequences. These results show that a phage-based approach can provide unique insights on coiled-coil pairing preferences that should facilitate both the analysis of natural sequences and the development of specific dimerization motifs that are orthogonal to one another.  相似文献   

7.
Two terminally blocked nonapeptides, each made up of six Aib residues, a Gly spacer and two L-Tyr residues in positions 2 and 8 (these are substituted in the side chain with either ferrocenoyl or methyl moieties), have been synthesized by solution methods and fully characterized. FT-IR absorption and two-dimensional NMR analyses indicate that a 3(10)-helical conformation is adopted by these rigid peptides in structure-supporting solvents. An X-ray diffraction investigation shows that the bis-L-Tyr(Me) nonapeptide in the crystal state is folded in a regular right-handed 3(10)-helical structure. As five amino acid units separate the two substituted L-Tyr residues in the peptide sequence, the two side chain moieties will-in solution-face each other after two complete turns of the ternary helix. By carrying out a detailed photophysical analysis, we have demonstrated that the electron-rich, hydrophobic and wide cavity generated by the nonapeptide template with two ferrocenoyloxybenzyl walls is able to host [60]fullerene. Further evidence for this superstructure has been provided in the gas phase by a mass spectrometric investigation.  相似文献   

8.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

9.
Self-organization is a critical aspect of living systems. During the folding of protein molecules, the hydrophobic interaction plays an important role in the collapse of the peptide chain to a compact shape. As the hydrophobic core tightens and excludes water, not only does the number of hydrophobic side chain contacts increase, but stabilization is further enhanced by an increase in strength of each hydrophobic interaction between side chains in the core. Thus, the self-organization of the protein folding process augments itself by enhancing the stability of the core against large-scale motions that would unfold the protein. Through calculations and computer simulations on a model four-helix bundle protein, we show how the strengthening of the hydrophobic interaction is crucial for stabilizing the core long enough for completion of the folding process and quantitatively manifests self-organizing dynamical behavior.  相似文献   

10.
Elucidating relationships between the amino-acid sequences of proteins and their three-dimensional structures, and uncovering non-covalent interactions that underlie polypeptide folding, are major goals in protein science. One approach toward these goals is to study interactions between selected residues, or among constellations of residues, in small folding motifs. The α-helical coiled coil has served as a platform for such studies because this folding unit is relatively simple in terms of both sequence and structure. Amino acid side chains at the helix-helix interface of a coiled coil participate in so-called "knobs-into-holes" (KIH) packing whereby a side chain (the knob) on one helix inserts into a space (the hole) generated by four side chains on a partner helix. The vast majority of sequence-stability studies on coiled-coil dimers have focused on lateral interactions within these KIH arrangements, for example, between an a position on one helix and an a' position of the partner in a parallel coiled-coil dimer, or between a--d' pairs in an antiparallel dimer. More recently, it has been shown that vertical triads (specifically, a'--a--a' triads) in antiparallel dimers exert a significant impact on pairing preferences. This observation provides impetus for analysis of other complex networks of side-chain interactions at the helix-helix interface. Here, we describe a combination of experimental and bioinformatics studies that show that d'--d--d' triads have much less impact on pairing preference than do a'--a--a' triads in a small, designed antiparallel coiled-coil dimer. However, the influence of the d'--d--d' triad depends on the lateral a'--d interaction. Taken together, these results strengthen the emerging understanding that simple pairwise interactions are not sufficient to describe side-chain interactions and overall stability in antiparallel coiled-coil dimers; higher-order interactions must be considered as well.  相似文献   

11.
For the photomodulation of the collagen triple helix with an azobenzene clamp, we investigated various collagenous peptides consisting of ideal (Gly-Pro-Hyp) repeats and containing cysteine residues in various positions for a side chain-to-side chain crosslink with a suitable chromophore derivative. Comparative conformational analysis of these cysteine peptides indicated an undecarepeat peptide with two cysteine residues located in the central portion in i and i+7 positions and flanked by (Gly-Pro-Hyp) repeat sequences as the most promising for the cross-bridging experiments. In aqueous alcoholic solution the azobenzene-undecarepeat peptide formed a stable triple helix in equilibrium with the monomeric species as a trans-azobenzene isomer, whereas photoisomerization to the cis isomer leads to unfolding of at least part of the triple helix. Furthermore, the residual supercoiled structure acts like an intermolecular knot, thus making refolding upon cis-to-trans isomerization a concentration-independent fast event. Consequently, these photoswitchable collagenous systems should be well suited for time-resolved studies of folding/unfolding of the collagen triple helix under variable thermodynamic equilibria.  相似文献   

12.
To explore the role of hydrogen bonding and helix-lipid interactions in transmembrane helix association, we have calculated the potential of mean force (PMF) as a function of helix-helix distance between two pVNVV peptides, a transmembrane model peptide based on the GCN4 leucine-zipper, in a dimyristoylphosphatidylcholine (DMPC) membrane. The peptide name pVNVV represents the interfacial residues in the heptad repeat of the dimer. The free energy decomposition reveals that the total PMF consists of two competing contributions from helix-helix and helix-lipid interactions. The direct, favorable helix-helix interactions arise from the specific contribution from the helix-facing residues and the generic contribution from the lipid-facing residues. The Asn residues in the middle of the helices show the most significant per-residue contribution to the PMF with various hydrogen bonding patterns as a function of helix-helix distance. Release of lipid molecules between the helices into bulk lipid upon helix association makes the helix-lipid interaction enthalpically unfavorable but entropically favorable. Interestingly, the resulting unfavorable helix-lipid contribution to the PMF correlates well with the cavity volume between the helices. The calculated PMF with an Asn-to-Val mutant (pVNVV --> pVVVV) shows a dramatic free energy change upon the mutation, such that the mutant appears not to form a stable dimer below a certain peptide concentration, which is in good agreement with available experimental data of a peptide with the same heptad repeat. A transmembrane helix association mechanism and its implications in membrane protein folding are also discussed.  相似文献   

13.
A new computational approach is proposed to probe the importance of residue side chains for the stability of a protein fold. Computational mutations to estimate protein stability (CMEPS) is based on the notion that the binding free energy corresponding to the complexation of a given side chain, considered as a "pseudo-ligand" of the wild type protein, reflects the importance of this side chain to the thermodynamic stability of the protein. The contribution of a particular side chain to the folding energy is estimated according to the molecular mechanics-generalized born surface area MM-GBSA approach, using a single molecular dynamics simulation trajectory of the wild type protein. CMEPS is a first principles method which does not contain any adjustable parameter that could be fitted to experimental data. The approach is first validated for Barnase and the B1 domain of protein L, for which a correlation coefficient R = 0.73, between experimental and CMEPS calculated DeltaDeltaG values, is found and then applied to the insulin monomer. In the present application, CMEPS replaces each amino acid by an alanine residue. Therefore, most mutations lead to cavities in the protein. From this the change in stability can be correlated with increased cavity volume. For insulin, this correlation is very similar compared with data previously analyzed for T4 lysozyme from an experiment for buried apolar side chains. There, the increased cavity volume has been related to the hydrophobic effect. However, since CMEPS uses the energetics in terms of electrostatic and van der Waals interactions (and not the hydrophobic effect which is difficult to relate to physical interactions), it is possible to study the effect of mutations of polar and solvent accessible side chains. According to CMEPS, residues Leu A16, Tyr A19, Leu B11, Leu B15, and Arg B22 are most important for the stability of the monomeric insulin fold. This is in agreement with experimental data. As a consequence, mutation of these residues may lead to misfolded and inactive insulin analogues.  相似文献   

14.
Here we investigate the structures and energetics of interactions between aromatic (Phe or Tyr) and basic (Lys or Arg) amino acids in alpha-helices. Side chain interaction energies are measured using helical peptides, by quantifying their helicities with circular dichroism at 222 nm and interpreting the results with Lifson-Roig-based helix/coil theory. A difficulty in working with Tyr is that the aromatic ring perturbs the CD spectrum, giving an incorrect helicity. We calculated the effect of Tyr on the CD at 222 nm by deriving the intensities of the bands directly from the electronic and magnetic transition dipole moments through the rotational strengths corresponding to each excited state of the polypeptide. This gives an improved value of the helix preference of Tyr (from 0.48 to 0.35) and a correction to the helicity for the peptides containing Tyr. We find that Phe-Lys, Lys-Phe, Phe-Arg, Arg-Phe, and Tyr-Lys are all stabilizing by -0.10 to -0.18 kcal.mol-1 when placed i, i + 4 on the surface of a helix in aqueous solution, despite the great difference in polarity between these residues. Interactions between these side chains have previously been attributed to cation-pi bonds. A survey of protein structures shows that they are in fact predominantly hydrophobic interactions between the CH2 groups of Lys or Arg and the aromatic rings.  相似文献   

15.
Polar interactions have a profound influence on membrane stability and structure. A membrane-solubilized GCN4 peptide, MS-1, is used to study the impact of polar networks. Amide functionalities from amino acid side chains have been shown to promote peptide oligomerization, but lacked specificity. Herein, the hydrogen bonding interactions of an Asn side chain are coupled with the hydroxyl of Ser or Thr to generate a polar network. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicate that a trimer assembly is established where each membrane-embedded hydrogen bond contributes 1 kcal mol-1.  相似文献   

16.
NMR relaxation data on disordered proteins can provide insight into both structural and dynamic properties of these molecules. Because of chemical shift degeneracy in correlation spectra, detailed site-specific analyses of side chain dynamics have not been possible. Here, we present new experiments for the measurement of side chain dynamics in methyl-containing residues in unfolded protein states. The pulse schemes are similar to recently proposed methods for measuring deuterium spin relaxation rates in (13)CH(2)D methyl groups in folded proteins.(1) However, because resolution in (1)H-(13)C correlation maps of unfolded proteins is limiting, relaxation data are recorded as a series of (1)H-(15)N spectra. The methodology is illustrated with an application to the study of side chain dynamics in delta131delta, a large disordered fragment of staphylococcal nuclease containing residues 1-3 and 13-140 of the wide-type protein. A good correlation between the order parameters of the symmetry axes of the methyl groups and the backbone (1)H-(15)N bond vectors of the same residue is observed. Simulations establish that such a correlation is only possible if the unfolded state is comprised of an ensemble of structures which are not equiprobable. A motional model, which combines wobbling-in-a-cone and Gaussian axial fluctuations, is proposed to estimate chi(1) torsion angle fluctuations, sigma(chi)()1, of Val and Thr residues on the basis of the backbone and side chain order parameters. Values of sigma(chi)()1 are approximately 10 degrees larger than what has previously been observed in folded proteins. Of interest, the value of sigma(chi)()1 for Val 104 is considerably smaller than for other Val or Thr residues, suggesting that it may be part of a hydrophobic cluster. Notably large (15)N transverse relaxation rates are observed in this region. To our knowledge, this is the first time that side chain dynamics in an unfolded state have been studied in detail by NMR.  相似文献   

17.
18.
Two intermediates observed for the folding process of apoplastocyanin (apoPC) were investigated by using a photoinduced triggering system combined with the transient grating and transient lens methods. The thermodynamic quantities, enthalpy, heat capacity, partial volume, and thermal expansion volume changes during the protein folding reaction were measured in time domain for the first time. An interesting observation is the positive enthalpy changes during the folding process. This positive enthalpy change must be compensated by positive entropy changes, which could be originated from the dehydration effect of hydrophobic residues and/or the translational entropy gain of bulk water molecules. Observed negative heat capacity change was explained by the dehydration effect of hydrophilic residues and/or motional confinement of amino acid side chains and water molecules in apoPC. The signs of the volume change and thermal expansion volume were different for two processes and these changes were interpreted in terms of the different relative contributions of the hydration and the dehydration of the hydrophilic residues. These results indicated two-step hydrophobic collapses in the early stage of the apoPC folding, but the nature of the dynamics was different.  相似文献   

19.
The conformational properties of omega-3 type of polyunsaturated fatty acid (PUFA) chains and their fragments were studied using Hartree-Fock (RHF/3-21G) and DFT (B3LYP/6-31G(d)) methods. Comparisons between a unit (U) fragment of the PUFA chain and a mono N-Ac-glycine-NHMe residue show that both structures have the same sequence of sp2-sp3-sp2 atoms. The flexibility of PUFA originates in the internal rotation about the above pairs of sigma bonds. Therefore, potential energy surfaces (PESs) were generated by a scan around the terminal dihedral angles (phi t1 and phi t2) as well as the phi 1 and psi 1 dihedrals of both 1U congeners (Me-CHCH-CH2-CHCHMe and MeCONH-CH2-CONHMe) at the RHF/3-21G level of theory. An interesting similarity was found in the flexibility between the cis allylic structure and the trans peptide models. A flat landscape can be seen in the cis 1U (hepta-2,5-diene) surface, implying that several conformations are expected to be found in this (PES). An exhaustive search carried out on the 1U and 2U models revealed that straight chain structures such as trans and cis beta (phi 1 approximately psi 1 approximately 120 degrees; phi 2 approximately psi 2 approximately -120 degrees) or trans and cis extended (phi 1 approximately psi 1 approximately phi 2 approximately psi 2 approximately 120 degrees) can be formed at the lowest energy of both isomers. However, forming helical structures, such as trans helix (phi 1 approximately -120 degrees, psi 1 approximately 12 degrees; phi 2 approximately -120 degrees, psi 2 approximately 12 degrees) or cis helix (phi 1 approximately -130 degrees, psi 1 approximately 90 degrees; phi 2 approximately -145 degrees, psi 2 approximately 90 degrees) will require more energy. These six conformations, found in 2U, were selected to construct longer chains such as 3U, 4U, 5U, and 6U to obtain the thermochemistry of secondary structures. The variation in the extension or compression of the chain length turned out to be a factor of 2 between the helical and nonhelical structures. The inside diameter of the "tube" of cis helix turned out to be 3.5 A after discounting the internal H atoms. Thermodynamic functions were computed at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). The cis-trans isomerization energy of 1.7 +/- 0.2 kcal mol(-1) unit(-1) for all structure pairs indicates that the conformer selection was consistent. A folding energy of 0.5 +/- 0.1 kcal mol(-1) unit(-1) has been extracted from the energy comparison of the helices and most extended nonhelical structures. The entropy change associated with the folding (Delta S(folding)) is decreases faster with the degree of polymerization (n) for the cis than for the trans isomer. As a consequence, the linear relationships between (Delta G(folding)) and n for the cis and trans isomer crossed at about n = 3. This suggested that the naturally occurring cis isomer less ready to fold than the trans isomer since a greater degree of organization is exhibited by the cis isomer during the folding process. The result of this work leads to the question within the group additivity rule: could the method applied in our study of the folding of polyallylic hydrocarbons be useful in investigating the thermochemistry of protein folding?  相似文献   

20.
We analyzed the correlations between molecular volume, solvent-accessible surface, and folding state (secondary structure content) for unfolded conformers of alpha (holo- and apomyoglobin) and beta (retinal-binding protein) proteins and a small water-soluble alanine-rich alpha-helical peptide. Conformers with different degrees of folding were obtained using molecular dynamics at constant temperature and pressure with implicit solvent (dielectric constant adjustment) for all four systems and with explicit solvent for the single helix peptide. Our results support the view that unfolded conformations are not necessary extended, that volume variation is not a good indication of folding state and that the simple model of water penetrating the interior of the protein does not explain the increase in volume upon unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号