首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
An extremely sensitive, reliable and simple procedure is described for the determination of physiological palladium, platinum and gold in human urine. The urine samples were adjusted to pH 4 (Pd, Au) or pH 5 (Pt), followed by conversion of the analytes to their pyrrolidinedithiocarbamate complexes. These complexes were separated from the matrix by liquid-liquid extraction into 4-methyl-2-pentanone resulting in a 25-fold enrichment. Determination was by electrothermal atomic absorption spectrometry (ET-AAS) using longitudinal inverse alternating current Zeeman-effect background correction. The limits of detection calculated from three standard deviations of the blank values were 20 ng l−1 for Pd and Au and 70 ng l−1 Pt. Within-day precision (n = 10, 5 μg l−1) ranged 5.2%–7.7%. The procedure is successfully applied to determine urinary palladium, platinum and gold in nine unexposed persons. Palladium levels in urine ranged < 20–80 ng l−1 (arithmetical MEAN=38.7 ng l−1), while gold levels ranged < 20–130 ng l−1 (36.0 ng l−1). Physiological platinum levels in urine were all < 70 ng l−1. The accuracy of the procedure was checked by analyzing a series of urine samples by a second independent method (magnetic sector field inductively-coupled plasma-mass spectrometry) in combination with UV photolysis.  相似文献   

4.
A method for the determination of copper in some sulfide minerals (lorandite, realgar, orpiment, marcasite, stibnite, galenite and sphalerite) by Zeeman electrothermal atomic absorption spectrometry is presented. After the dissolution of samples, copper was extracted with sodium diethyldithiocarbamate into different organic solvents (carbon tetrachloride, chloroform and methylisobutyl ketone) at pH 11.0–12.0. The procedure was verified by standard addition. The standard deviation (SD) for 0.5 ng Cu is 0.01 ng, the relative standard deviation ranges from 3.5 to 5.5% and the detection limit of the method, calculated as 3 SD of the blank, was found to be 0.05 μg · g–1.  相似文献   

5.
A method for the determination of copper in some sulfide minerals (lorandite, realgar, orpiment, marcasite, stibnite, galenite and sphalerite) by Zeeman electrothermal atomic absorption spectrometry is presented. After the dissolution of samples, copper was extracted with sodium diethyldithiocarbamate into different organic solvents (carbon tetrachloride, chloroform and methylisobutyl ketone) at pH 11.0–12.0. The procedure was verified by standard addition. The standard deviation (SD) for 0.5 ng Cu is 0.01 ng, the relative standard deviation ranges from 3.5 to 5.5% and the detection limit of the method, calculated as 3 SD of the blank, was found to be 0.05 μg · g–1. Received: 26 May 1997 / Revised: 10 September 1997 / Accepted: 16 September 1997  相似文献   

6.
The sample is decomposed with hydrofluoric and nitric acids and the diluted solution is injected into the graphite furnace. For a 100-mg sample, the detection limit (3 σ) is 1.2 μg AI g-1. The coefficient of variation is 3–13% for 9–7000 μg Al g-1 in silicon.  相似文献   

7.
A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 degrees C and 800 degrees C were chosen for aqueous and organic solutions, respectively; 2700 degrees C and 2100 degrees C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 degrees C and 1600 degrees C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 microg L(-1).  相似文献   

8.
A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300?°C and 800?°C were chosen for aqueous and organic solutions, respectively; 2700?°C and 2100?°C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100?°C and 1600?°C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 μg L–1.  相似文献   

9.
A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 °C and 2600 °C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg–1 (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg–1 (wet weight).  相似文献   

10.
Summary A simple, selective and sensitive method was developed based on electrothermal atomic absorption spectrometry using Zeeman correction for quantitation of lead, in 100 ml of whole blood sample, as biological indicator for occupational exposure. Confidence parameters and stability of samples were considered. Ashing and atomization temperatures, considered critical, were 700 °C and 1,700 °C, respectively. The levels found during the validation process showed good sensitivity linearity, recovery, precision and accuracy. The stability results presented levels remaining constant for a 15 months period. The variations were not higher than 15% when comparing concentrations in zero time to those obtained after storage period.  相似文献   

11.
The analytical performance of electrodeposited noble metals (Pd, Rh or Pd+Rh) on the graphite surface for cadmium determination in the presence of inorganic acids was evaluated and discussed. The study was carried out for 16% HNO3, 28% HCl and a mixture of both acids (aqua regia). It was demonstrated that all electrodeposited modifiers stabilized cadmium up to 800°C in the presence of HNO3 and aqua regia. When only HCl was present in the solution the thermal stability of cadmium was less pronounced, the maximum pyrolysis temperature that could be applied was 500°C. The long-term study for Cd determination shows that permanent performance of electrodeposited modifiers is not influenced by mineral acids, moreover, the tube lifetime was doubled, compared with a non-modified tube, when Pd+Rh were electrodeposited onto the graphite surface.  相似文献   

12.
A method for the determination of cadmium in slurries of marine sediment using palladium and phosphate as chemical modifier has been optimized. To stabilize the marine sediment slurry, Triton X-100 at 0.1% was used. To obtain a complete pyrolysis of the slurry sample two mineralization steps were used, the first at 480 °C and the second at 600 °C and 700 °C for phosphate and palladium, respectively. The precision and accuracy of the method have been studied by analyzing the Reference Material PACS-1 (marine sediment) of National Research Council Canada. The detection limits (LOD) were 11.9 g kg–1 for phosphate and 42.0 g kg–1 when palladium was used. These methods have been applied to the determination of cadmium in marine sediment samples from the Galicia coast and the results of both methods were compared; no significant differences were found between the two procedures.  相似文献   

13.
The shift of atomic spectral lines in a magnetic field (the Zeeman effect) forms the basis for three novel developments in atomic absorption spectrometry: (i) greatly improved background correction; (ii) the use of forward scattering techniques as an analytical tool; (iii) the determination of small gaseous molecules.  相似文献   

14.
A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different ‘coating’ treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l−1 NH4F HF after every three boron measurements. The addition of 10 μl of 15 g l−1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l−1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.  相似文献   

15.
The determination of zinc in pure copper and nickel-based alloy was successfully accomplished with a longitudinal Zeeman-effect correction and end-capped transversely heated graphite atomizer. Since aqua regia (an acid mixture of nitric acid and hydrochloric acid, 1:3, v/v) was used as the dissolving reagent, volatile ZnCl2 was formed. Consequently, less Zn was found in the sample. EDTA could improve the atomic absorption profiles. Binary modifiers, EDTA + Pd(NO3)2 and EDTA + Mg(NO3)2, were effective for eliminating the chloride interference and the spectral interference from Cu I 213.853 nm. The experimental results obtained with and without the modifiers were compared. Increase of 200 °C in the pyrolysis temperature resulted from the addition of binary modifiers for both pure copper and nickel-based alloys. For pure copper, the atomization temperature increased from 1400 to 1600 °C whereas the atomization temperature increased from 1100 to 1600 °C for nickel-based alloys. The analytical performance of the proposed method was evaluated. Zinc contents in the pure copper and nickel-based alloy standards determined with both binary modifiers agreed closely with the certified values. The recovery ranged from 93 ± 2 to 104 ± 6% at 95% confidence level. The detection limits obtained by the binary modifiers of EDTA + Pd(NO3)2 and EDTA + Mg(NO3)2 were 0.77 and 0.31 pg, respectively.  相似文献   

16.
Magnesium content is an important diagnostic parameter in medicine. It is recognized that its determination in one compartment is not sufficient for reliable information about the magnesium status in the body. In addition to the common procedures of magnesium determination in blood by flame atomic absorption spectrometry, the procedure of electrothermal atomization has also been developed and applied to the analysis of blood fractions, mononuclear cells and isolated nuclei of liver cells.Electrothermal atomization is preferred in cases where the sample size is limited and the magnesium content low. The total errors are in the order of 3–4%. Various techniques of sample pretreatment have been tested and direct dilution with 0.05 mol l−1 nitric acid was optimal when the samples were not mineralized. The calibration graph based on standards containing albumin was found to give the best results, as the form of magnesium in the samples may influence the ashing and atomization processes. Good agreement was obtained for determination of magnesium in standard serum. The results are compared with those obtained by the standard flame atomization technique.  相似文献   

17.
Procedures for the electrothermal atomic absorption spectrometric determination of lead and cadmium in urine, serum and blood are developed. For serum and blood, the samples are diluted by incorporating 0.015% (w/v) Triton X-100 and 0.1% (w/v) ammonium dihydrogenphosphate to the solutions, which are then introduced directly into the furnace. A solution containing 15% (w/v) hydrogen peroxide and 0.65% (w/v) nitric acid is also introduced into the atomizer by means of a separate injection. Zeeman-based correction is recommended. Both conventional and fast-heating programs are discussed. Calibration is carried out using the standard additions method. The reliability of the procedures is checked by analyzing three certified reference materials and by recovery studies.  相似文献   

18.
Pereira LA  Amorim I  da Silva JB 《Talanta》2006,68(3):771-775
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively.  相似文献   

19.
Three chemical modifiers ((NH(4))(2)HPO(4), NH(4)H(2)PO(4), and Pd as Pd(NO(3))(2)) were evaluated for the determination of Cd in acid-digested solutions of hair and blood using electrothermal atomic absorption spectrometry in a tungsten coil atomizer (TCA). All modifiers caused some thermal stabilization of Cd when compared to the behavior observed in nitric acid medium. The best effects were observed in 15 mug ml(-)(1) Pd medium; the characteristic mass of Cd was 0.3 pg and the method detection limits were 0.009 mug g(-)(1) in hair and 0.2 mug l(-)(1) in blood. In addition to a slight thermal stabilization effect, Pd also increased the sensitivity for Cd by ca. 40% and the tungsten coil lifetime by 20% (i.e. from 300 to 360 heating cycles), reduced background signals, and eliminated condensed phase interferences caused by concomitants. The accuracy (3.2% as mean relative error in the Pd modifier) was checked for the determination of Cd in acid-digested solutions of certified reference materials of human hair and blood and by recoveries of Cd in spiked hair and blood samples by both TCA and a graphite furnace procedure. All results obtained in chemical modifiers are in agreement at a 95% confidence level.  相似文献   

20.
This paper proposes a method for the determination of lead in aluminum and magnesium antacids employing electrothermal atomic absorption spectrometry (ET AAS). The pyrolysis and atomization temperatures established during the optimization step were 700 and 2200 °C, respectively, using phosphate as the chemical modifier. Under these conditions, a characteristic mass of 25 pg, and limits of detection and quantification of 0.40 and 1.35 μg L−1, respectively were obtained. Some experiments demonstrated that the calibration can be performed employing the external calibration technique using aqueous standards. The precision expressed as relative standard deviation (RSD %) was 4.03% for an antacid sample with lead concentrations of 284.5 μg L−1. The proposed method was applied for the determination of lead in five antacid samples acquired in Salvador City, Brazil. The lead content was varied from 87 to 943 μg g−1. The samples were also analyzed after complete dissolution by inductively coupled plasma mass spectrometry (ICP-MS). No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号