首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the Non-Commutative phase space and Dirac equation, time-dependent Dirac oscillator are introduced. After presenting the desire general form of a two-dimensional linear dependency on the coordinate time-dependent potential, the Dirac equation is written in terms of Non-Commutative phase space parameters and solved in a general form by using Lewis-Riesenfield invariant method and the time-dependent invariant of Dirac equation with two-dimensional linear dependency on the coordinate time-dependent potential in Non-Commutative phase space has been constructed, then such latter operations are done for time-dependent Dirac oscillator. In order to solve the differential equation of wave function time evolution for Dirac equation and time-dependent Dirac oscillator which are partial differential equation some appropriate ordinary physical problems have been studied and at the end the interesting result has been achieved.  相似文献   

2.
Quaternion Dirac equation has been analyzed and its supersymmetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, nonzero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.  相似文献   

3.
No Heading We study the Dirac equation in 3+1 dimensions with non-minimal coupling to an isotropic radial three-vector potential and in the presence of a static electromagnetic potential. The space component of the electromagnetic potential has angular (non-central) dependence such that the Dirac equation separates completely in spherical coordinates. We obtain solutions for the case where the three-vector potential is linear in the radial coordinate (Dirac oscillator) and the time component of the electro-magnetic potential vanishes. The relativistic energy spectrum and spinor eigenfunctions are obtained.  相似文献   

4.
We solve the 2D Dirac equation describing graphene in the presence of a linear vector potential. The discretization of the transverse momentum due to the infinite mass boundary condition reduced our 2D Dirac equation to an effective massive 1D Dirac equation with an effective mass equal to the quantized transverse momentum. We use both a numerical Poincaré map approach, based on space discretization of the original Dirac equation, and a direct analytical method. These two approaches have been used to study tunneling phenomena through a biased graphene strip. The numerical results generated by the Poincaré map are in complete agreement with the analytical results.  相似文献   

5.
The relativistic problems of neutral fermions subject to a new partially exactly solvable PT-symmetric potential and an exactly solvable PT-symmetric hyperbolic cosecant potential in 1+1 dimensions are investigated. The Dirac equation with the double-well-like mass distribution in the background of the PT-symmetric vector potential coupling can be mapped into the Schrödinger-like equation with the partially exactly solvable double-well potential. The position-dependent effective mass Dirac equation with the PT-symmetric hyperbolic cosecant potential can be mapped into the Schrödinger-like equation with the exactly solvable modified Pöschl-Teller potential. The real relativistic energy levels and corresponding spinor wavefunctions for the bound states have been given in a closed form.  相似文献   

6.
7.
Electron scattering in the monolayer graphene has been considered within the framework of our model of short-range defects proposed earlier. Electronic properties are determined by the Dirac equation for the two-component spinor wave function. Perturbation is modeled by the annular well with a band-asymmetric potential. Band-asymmetry of the potential stems from the local structure defect and leads to the mass (gap) perturbation in the Dirac equation. Transitions between the K and K’ critical points in the Brillouin zone are neglected, which is valid provided that the short-range perturbation has a finite radius. Exact explicit formulas for the scattering matrix have been derived. Results are presented in terms of the scattering phases and in the geometrical form of a relation between some 2-vectors. The characteristic equation for the bound and resonance states has been obtained in the form of an orthogonality condition. An approximate calculation of observables in terms of the scattering theory results is outlined.  相似文献   

8.
Exact integration of the Dirac equation is a classical topic in mathematical physics, which has been researched for several decades. A basic method is complete segregation of the variables. Such separation can be attained in a Dirac equation containing an external electromagnetic field in Minkowski space by means of complete sets of first-order symmetry matrix operators. The purpose of this paper is to solve an analogous case for a free massless Dirac equation. That task has a special feature because external fields are absent and the massless equation is reduced to a D'Alambert equation by squaring. Nevertheless, interest attaches to states defined by the first-order symmetry-operator matrices that cannot be obtained by setting the mass to zero in systems containing a mass Dirac equation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 105–110, January, 1995.  相似文献   

9.
By means of the renormalized Dirac spinor wave function and through. the introduction of an effective interaction operator, the exact ~ethe-saypetere quation for multi-fermion bound states has been reduced to an equivalent Pauli-Schrodinger equation. As a result, the specific form of the latter equation in the static approximation has directly been given as well. In comparison of the effective interaction operator appearing in the Pauli-Schrodinger equation with the corresponding S-matrix, a substantial difference between both interactions acting in the bound state and the scattering state emerges which is important to determine an interaction potential in the bound state.  相似文献   

10.
The Dirac equation is used in an investigation of the properties of mesons according to the quark-antiquark model. The dependence of the meson mass on angular momentum excitation is considered for several models. The properties of the Dirac equation with a potential consisting of an equal mixture of scalar and vector potential are investigated.  相似文献   

11.
In this research, we have been obtained the Dirac equation for q-parameter modified P?schl–Teller potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number by choosing a position-dependent mass. The energy eigenvalues equation and the corresponding unnormalized wave functions have been obtained. The Nikiforov-Uvarov method has been used in the calculations.  相似文献   

12.
在强激光场中,通过Kramers-Henneberger(KH)变换和高频近似可以将狄拉克方程的求解从一个含时问题转换成一个稳态问题来研究。以氢原子为例,详细研究了相对论框架下该稳态问题中的有效库仑势的特点,并和非相对论框架下的结果进行了比较。研究发现,由于相对论有效质量的引入,有效库仑势的分布范围并不像非相对论条件下随着激光场强度的增强单调变大,而是增加到一定值后不再变化。另外,通过比较偶极近似和非偶极近似下有效库仑势的分布,发现对高频强场,偶极近似不再适用。  相似文献   

13.
龙超云  秦水介 《中国物理》2007,16(4):897-900
In this paper the one-dimensional Dirac equation with linear potential has been solved by the method of canonical transformation. The bound-state wavefunctions and the corresponding energy spectrum have been obtained for all bound states.  相似文献   

14.
The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.  相似文献   

15.
We solve the Dirac equation for Mie-type potential including a Coulomb-like tensor potential under spin and pseudospin symmetry limits with arbitrary spin–orbit coupling quantum number κ. The Nikiforov–Uvarov method is used to obtain analytical solutions of the Dirac equation. Since it is only the wave functions which are obtained in a closed exact form; as for the eigenvalues, only the eigenvalue equations have been given and they have been solved numerically. It is also shown that the degeneracy between spin doublets and pseudospin doublets is removed by tensor interaction.  相似文献   

16.
17.
New classes of solvable scalar and vector potentials for the Dirac equation are obtained, together with the associated exact Dirac spinors. The method of derivation is based on an a priori constraint between the solutions, leading to an interrelation between the scalar and vector potential in the form ofa Riccati equation. The present note generalizes a series of former articles.  相似文献   

18.
陈昌远  孙东升  陆法林 《物理学报》2006,55(8):3875-3879
在标量势等于矢量势的条件下,获得了库仑势加新环形势的Klein-Gordon方程和Dirac方程的束缚态的精确解. 对于Klein-Gordon方程,获得了精确的能谱方程和归一化的波函数. 对于Dirac方程,给出了精确的能谱方程和归一化的旋量波函数. 关键词: 库仑势加新环形势 束缚态 精确解  相似文献   

19.
赵斌 《物理学报》2016,65(5):52401-052401
本文在空间格点上利用虚时间步长方法求解了球形Dirac方程, 着重研究了出现的假态问题. 利用三点数值导数公式离散方程中一阶导数项, 可以证明对于量子数为 κ 和 -κ的单粒子能级能量是完全相同的, 其中一个为物理解, 另一个为假态. 通过在径向Dirac方程中引入Wilson 项, 可以解决假态问题, 得到全部物理解. 文章以 Woods-Saxon 势为例, 考虑 Wilson 项后, 得到与打靶法一致的结果.  相似文献   

20.
It is shown that the Dirac equation can be written in a form similar to Maxwell equations, where the Maxwell tensor is written as a bilinear expression of the Dirac field and the current is a simple function of the external potential and the Dirac field. Similarly, the Maxwell equations can be written as a self-coupled Dirac equation where the potential is a simple function of the Dirac field itself. It is illustrated by examples how the new formalism helps to find solutions of the coupled field equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号