首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. The Ordered Median Location problem is a generalization of most of the classical locations problems like p-median or p-center problems. The OGCLP model provides a unifying structure for the standard location models and allows us to develop objectives sensitive to both relative and absolute customer-to-facility distances. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities is already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.  相似文献   

2.
In this note we give a unifying approach to the problem of characterizing the extreme points of those convex matrix sets which correspond to the domains of various types of capacitated network problems. It is shown that we can determine whether a matrix is an extreme point of the sets by examining the pattern of a certain graph associated with it. We also study the extreme points of the convex matrix sets which are related to network problems free from capacity constraints by linking them up with certain capacitated network problem.  相似文献   

3.
Summary We introduce a generalization of the well-know Uncapacitated Facility Location Problem, in which clients can be served not only by single facilities but also by sets of facilitities. The problem, calledGaneralized Uncapacitated Facility Lacition Problem (GUFLP), was inspired by the Index Selection Problem in physical database design. We for mulate GUFLP as a Set Packing Problem, showing that our model contains all the clique inequalities (in polynomial number). Moreover, we describe and exact separation procedure for odd-hole inequalities, based on the particular structure of the problem. These results are used within a branch-and-cut algorithm for the exact solution of GUFLP. Computational results on two different classes of test problems are given.  相似文献   

4.
The Multi-commodity Location Problem was one of the ‘multi-level’ location problems introduced by Warszawski and Peer in their paper on building sites. Methods of solution are developed for this problem via a dual-based approach and via a Lagrangean dual-based approach with hill-climbing. Numerical results are presented.  相似文献   

5.
Location covering problems, though well studied in the literature, typically consider only nodal (i.e. point) demand coverage. In contrast, we assume that demand occurs from both nodes and paths. We develop two separate models – one that handles the situation explicitly and one which handles it implicitly. The explicit model is formulated as a Quadratic Maximal Covering Location Problem – a greedy heuristic supported by simulated annealing (SA) that locates facilities in a paired fashion at each stage is developed for its solution. The implicit model focuses on systems with network structure – a heuristic algorithm based on geometrical concepts is developed. A set of computational experiments analyzes the performance of the algorithms, for both models. We show, through a case study for locating cellular base stations in Erie County, New York State, USA, how the model can be used for capturing demand from both stationary cell phone users as well as cell phone users who are in moving vehicles.  相似文献   

6.
With emergencies being, unfortunately, part of our lives, it is crucial to efficiently plan and allocate emergency response facilities that deliver effective and timely relief to people most in need. Emergency Medical Services (EMS) allocation problems deal with locating EMS facilities among potential sites to provide efficient and effective services over a wide area with spatially distributed demands. It is often problematic due to the intrinsic complexity of these problems. This paper reviews covering models and optimization techniques for emergency response facility location and planning in the literature from the past few decades, while emphasizing recent developments. We introduce several typical covering models and their extensions ordered from simple to complex, including Location Set Covering Problem (LSCP), Maximal Covering Location Problem (MCLP), Double Standard Model (DSM), Maximum Expected Covering Location Problem (MEXCLP), and Maximum Availability Location Problem (MALP) models. In addition, recent developments on hypercube queuing models, dynamic allocation models, gradual covering models, and cooperative covering models are also presented in this paper. The corresponding optimization techniques to solve these models, including heuristic algorithms, simulation, and exact methods, are summarized.  相似文献   

7.
For a given pair of finite point setsP andQ in some Euclidean space we consider two problems: Problem 1 of finding the minimum Euclidean norm point in the convex hull ofP and Problem 2 of finding a minimum Euclidean distance pair of points in the convex hulls ofP andQ. We propose a finite recursive algorithm for these problems. The algorithm is not based on the simplicial decomposition of convex sets and does not require to solve systems of linear equations.  相似文献   

8.
In this paper we examine the Uncapacitated Facility Location Problem (UFLP) with a special structure of the objective function coefficients. For each customer the set of potential locations can be partitioned into subsets such that the objective function coefficients in each are identical. This structure exists in many applications, including the Maximum Cover Location Problem. For the problems possessing this structure, we develop a new integer programming formulation that has all the desirable properties of the standard formulation, but with substantially smaller dimensionality, leading to significant improvement in computational times. While our formulation applies to any instance of the UFLP, the reduction in dimensionality depends on the degree to which this special structure is present. This work was supported by grants from NSERC.  相似文献   

9.
The Generalized Cardinality-Constrained Shortest Path Problem (GCCSPP) consists in finding the minimum cost path in a digraph, using at most r arcs in a subset F of the arc set. We propose an algebraic characterization of the extreme points of the associated polytope, and then we show that it is equivalent to the geometric one, obtained extending to the GCCSPP some known results for the cardinality-constrained shortest path problem.  相似文献   

10.
Multiobjective linear optimization problems (MOLPs) arise when several linear objective functions have to be optimized over a convex polyhedron. In this paper, we propose a new method for generating the entire efficient set for MOLPs in the outcome space. This method is based on the concept of adjacencies between efficient extreme points. It uses a local exploration approach to generate simultaneously efficient extreme points and maximal efficient faces. We therefore define an efficient face as the combination of adjacent efficient extreme points that define its border. We propose to use an iterative simplex pivoting algorithm to find adjacent efficient extreme points. Concurrently, maximal efficient faces are generated by testing relative interior points. The proposed method is constructive such that each extreme point, while searching for incident faces, can transmit some local informations to its adjacent efficient extreme points in order to complete the faces’ construction. The performance of our method is reported and the computational results based on randomly generated MOLPs are discussed.  相似文献   

11.
We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time.Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point.Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point.The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.  相似文献   

12.
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [31] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow problems into two single-medium cases by defining the ghost fluids state in terms of the predicted the interface state, which makes the material interface “invisible”. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [55]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.  相似文献   

13.
We study the Multi-Depot Multiple Traveling Salesman Problem (MDMTSP), which is a variant of the very well-known Traveling Salesman Problem (TSP). In the MDMTSP an unlimited number of salesmen have to visit a set of customers using routes that can be based on a subset of available depots. The MDMTSP is an NP-hard problem because it includes the TSP as a particular case when the distances satisfy the triangular inequality. The problem has some real applications and is closely related to other important multi-depot routing problems, like the Multi-Depot Vehicle Routing Problem and the Location Routing Problem. We present an integer linear formulation for the MDMTSP and strengthen it with the introduction of several families of valid inequalities. Certain facet-inducing inequalities for the TSP polyhedron can be used to derive facet-inducing inequalities for the MDMTSP. Furthermore, several inequalities that are specific to the MDMTSP are also studied and proved to be facet-inducing. The partial knowledge of the polyhedron has been used to implement a Branch-and-Cut algorithm in which the new inequalities have been shown to be very effective. Computational results show that instances involving up to 255 customers and 25 possible depots can be solved optimally using the proposed methodology.  相似文献   

14.
We review various relaxations of (0,1)-quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way. Some of these equivalences have been known previously, but our approach leads to short and transparent proofs. Moreover we extend the approach to the case of equality constrained problems by taking the squared linear constraints into the objective function. We show how this technique can be applied to the Quadratic Assignment Problem, the Graph Partition Problem and the Max-Clique Problem. Finally we show our relaxation to be best possible among all quadratic majorants with zero trace.The research was partially supported by GAR 201/93/0519.Research support by Christian Doppler Laboratorium für Diskrete Optimierung.Research support by the National Science and Engineering Research Council Canada.  相似文献   

15.
Simplicial decomposition is an important form of decomposition for large non-linear programming problems with linear constraints. Von Hohenbalken has shown that if the number of retained extreme points is n + 1, where n is the number of variables in the problem, the method will reach an optimal simplex after a finite number of master problems have been solved (i.e., after a finite number of major cycles). However, on many practical problems it is infeasible to allocate computer memory for n + 1 extreme points. In this paper, we present a version of simplicial decomposition where the number of retained extreme points is restricted to r, 1 ? r ? n + 1, and prove that if r is sufficiently large, an optimal simplex will be reached in a finite number of major cycles. This result insures rapid convergence when r is properly chosen and the decomposition is implemented using a second order method to solve the master problem.  相似文献   

16.
This paper looks at the task of computing efficient extreme points in multiple objective linear programming. Vector maximization software is reviewed and the ADBASE solver for computing all efficient extreme points of a multiple objective linear program is described. To create MOLP test problems, models for random problem generation are discussed. In the computational part of the paper, the numbers of efficient extreme points possessed by MOLPs (including multiple objective transportation problems) of different sizes are reported. In addition, the way the utility values of the efficient extreme points might be distributed over the efficient set for different types of utility functions is investigated. Not surprisingly, results show that it should be easier to find good near-optimal solutions with linear utility functions than with, for instance, Tchebycheff types of utility functions.Dedicated to Professor George B. Dantzig on the occasion of his eightieth birthday.  相似文献   

17.
Aeromedical and ground ambulance services often team up in responding to trauma crashes, especially when the emergency helicopter is unable to land at the crash scene. We propose location-coverage models and a greedy heuristic for their solution to simultaneously locate ground and air ambulances, and landing zones (transfer points). We provide a coverage definition based on both response time and total service time, and consider three coverage options; only ground emergency medical services (EMS) coverage, only air EMS coverage, or joint coverage of ground and air EMS in which the patient is transferred from an ambulance into an emergency helicopter at a transfer point. To analyze this complex coverage situation we develop two sets of models, which are variations of the Location Set Covering Problem (LSCP) and the Maximal Covering Location Problem (MCLP). These models address uncertainty in spatial distribution of motor vehicle crash locations by providing coverage to a given set of both crash nodes and paths. The models also consider unavailability of ground ambulances by drawing upon concepts from backup coverage models. We illustrate our results on a case study that uses crash data from the state of New Mexico. The case study shows that crash node and path coverage percentage values decrease when ground ambulances are utilized only within their own jurisdiction.  相似文献   

18.
We consider a network design problem that arises in the cost-optimal design of last mile telecommunication networks. It extends the Connected Facility Location problem by introducing capacities on the facilities and links of the networks. It combines aspects of the capacitated network design problem and the single-source capacitated facility location problem. We refer to it as the Capacitated Connected Facility Location Problem. We develop a basic integer programming model based on single-commodity flows. Based on valid inequalities for the capacitated network design problem and the single-source capacitated facility location problem we derive several (new) classes of valid inequalities for the Capacitated Connected Facility Location Problem including cut set inequalities, cover inequalities and combinations thereof. We use them in a branch-and-cut framework and show their applicability and efficacy on a set of real-world instances.  相似文献   

19.
The Capacitated Facility Location Problem (CFLP) is among the most studied problems in the OR literature. Each customer demand has to be supplied by one or more facilities. Each facility cannot supply more than a given amount of product. The goal is to minimize the total cost to open the facilities and to serve all the customers. The problem is $\mathcal{NP}$ -hard. The Kernel Search is a heuristic framework based on the idea of identifying subsets of variables and in solving a sequence of MILP problems, each problem restricted to one of the identified subsets of variables. In this paper we enhance the Kernel Search and apply it to the solution of the CFLP. The heuristic is tested on a very large set of benchmark instances and the computational results confirm the effectiveness of the Kernel Search framework. The optimal solution has been found for all the instances whose optimal solution is known. Most of the best known solutions have been improved for those instances whose optimal solution is still unknown.  相似文献   

20.
In this paper we consider the Multiple Objective Optimization Problem (MOOP), where concave functions are to be maximized over a feasible set represented as a union of compact convex sets. To solve this problem we consider two auxiliary scalar optimization problems which use reference points. The first one contains only continuous variables, it has higher dimensionality, however it is convex. The second scalar problem is a mixed integer programming problem. The solutions of both scalar problems determine nondominated points. Some other properties of these problems are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号