首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,5-Dihydropentalene (4) is formed as the main product on treatment of trans-1,2-bis(2,2-dibromocyclo-propyl)ethene 3 with methyllithium at −40°. In addition the reaction affords 1- and 2-propadienylcyclopentadienes (5a) and (5b), and trans-1,2,4,6,7-octapentaene (6), new C8H8 isomers. Diels-Alder adducts of 4, 5a and 5b were obt in the reaction with perfluorobut-2-yne. The formation of 1,5-dihydropentalene 4 is explained by a double ring expansion sequence involving consecutive carbene-carbene rearrangements with 1,3-carbon and subsequent 1,2-hydrogen shifts, supported by the reaction of double labelled (13C-depleted) 3. From readily available 3 at low temperatures formation and fusion of two 5-membered rings are achieved in one step.  相似文献   

2.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   

3.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

4.
Excess molar enthalpies HEm of dimethylcarbonate, diethylcarbonate or propylene carbonate + trans-1,2-dichloroethylene, + trichloroethylene, and + tetrachloroethylene, respectively have been determined at 298.15 K using an LKB flow-microcalorimeter. Experimental data have been correlated by means of the Redlich-Kister equation and adjustable parameters have been evaluated by least-squares analysis. The HEm values range from a minimum value of − 1000 J mol−1 for diethylcarbonate + trans-1,2-dichloroethylene up to a maximum of 920 J mol−1 for dimethylcarbonate + tetrachloroethylene. For each series of mixtures, a systematic increase in HEm with an increase in the number of Cl atoms in the chloroalkene molecule has been noted. The results are discussed in terms of the molecular interactions.  相似文献   

5.
The complexes trans-[Os(CCPh)Cl(dppe)2] (1), trans-[Os(4-CCC6H4CCPh)Cl(dppe)2] (2), and 1,3,5-{trans-[OsCl(dppe)2(4-CCC6H4CC)]}3C6H3 (3) have been prepared. Cyclic voltammetric studies reveal a quasi-reversible oxidation process for each complex at 0.36–0.39 V (with respect to the ferrocene/ferrocenium couple at 0.56 V), assigned to the OsII/III couple. In situ oxidation of 1–3 using an optically transparent thin-layer electrochemical (OTTLE) cell affords the UV–Vis–NIR spectra of the corresponding cationic complexes 1+–3+; a low-energy band is observed in the near-IR region (11 000–14 000 cm−1) in each case, in contrast to the neutral complexes 1–3 which are optically transparent below 20 000 cm−1. Density functional theory calculations on the model compounds trans-[Os(CCPh)Cl(PH3)4] and trans-[Os(4-CCC6H4CCPh)Cl(PH3)4] have been used to rationalize the observed optical spectra and suggest that the low-energy bands in the spectra of the cationic complexes can be assigned to transitions involving orbitals delocalized over the metal, chloro and alkynyl ligands. These intense bands have potential utility in switching nonlinear optical response, of interest in optical technology.  相似文献   

6.
4-1,2:3,4-(trans-1,3,5-hexatriene)](η5-cyclopentadienyl)cobalt (3) undergoes dimerization to form a flyover carbene, 5, with concomitant elimination of one equivalent of trans-1,3,5-hexatriene. Structure 5 thermally rearranges via a metal-mediated [1,5]-H shift to carbene 6: Ea = 29.1 ± 0.4 kcal mol−1, log A = 11.6 ± 0.6. The structures of 5 and 6 were confirmed by single crystal X-ray determination. Low temperature irradiation of 6 generates 13 which undergoes a thermally induced reversion to 6: Ea = 19.4 ± 0.9 kcal mol−1, log A = 10.0 ± 1.3. Deuterium labeling studies indicate the mechanisms involved in these C---H transformations are intramolecular, regio-, and stereospecific. The chemical study of this system is extended to include a variety of homologous CpCo(triene) complexes. A comparison between the triene approach to the formation of these flyover pentadienyl carbenes and direct carbene addition is described.  相似文献   

7.
Pentacarbonyl(diethylaminocarbyne)chromium tetrafluoroborate, [(CO)5− CrCNEt2]BF4 (I), reacts with PPh3 with substitution of CO and formation of trans-tetracarbonyl(diethylaminocarbyne)triphenylphosphanechromium tetra-fluoroborate, trans-[PPh3(CO)4CrCNEt2]BF4 (III). Substitution of CO by PPh3 in neutral trans-tetracarbonyl(halo)(diethylaminocarbyne)chromium complexes, trans-X(CO)4CrCNEt2 (IVa: X = Br, IVb: X = I), leads in a reversible reaction to the corresponding tricarbonyl complexes, mer-X(PPh3)(CO)3− CrNEt2 (V), PPh3 occupying the cis-position to the carbyne ligand. With PPh3 in large excess both reactions follow a first-order rate law. This as well as the activation parameters (ΔH≠ = 104–113 kJ mol−1, ΔS≠ = 64–71 J mol−1 K−1) indicate a dissociative mechanism.  相似文献   

8.
An unexpected [2+2]-cycloaddition occured in the reaction of 4-methyldithieno-[3,4-6:3′,2′-d]pyridinium iodide (3)with two equivalents of DMAD, giving 4-(trans-1,2-dicarbomethoxy-2- iodovinyl)-5-methyl-6,7-dicarbomethoxy-4,5-dihydrothieno [23-c]quinoline (4) in 54% yield. 4 is formed via 4-methyl-5-(trans-1,2-dicarbomethoxy-2-iodo-4,5-dihydrothieno [3,4-b:3′,2′-d]pyridine (16), followed by [2+2]-cycloaddition. The primary adduct rearranges via a thiepin to an episulfide which eliminates sulfur to give 4.  相似文献   

9.
Treatment of (E)-6-phenyl-5-hexenyl carbamates with s-BuLi/(−)-sparteine is shown to afford the trans-1,2-disubstituted cyclopentane derivatives in high % ee, along with the bicyclo[3.1.0]hexanes (bicyclization products).  相似文献   

10.
The nitrosyl complexes trans-[ReCl(NO)(dppe)2]A2 (1; A = BF4 or NO3; dppe = Ph2PCH2CH2−PPh2) and trans-[ReCl(NO)(dppe)2][BF4] (2) have been prepared from the reactions of NO[BF4] or NO with trans-[ReCl(N2)dppe)2]. An unusual facile oxidation of NO to nitrate is involved in the formation of (1, A = NO3), the X-ray structure of which is reported.  相似文献   

11.
The 1:1 and 2:1 complexes between water and trans- and cis-isomers of nitrous acid have been isolated in argon matrices and studied using FTIR spectroscopy and DFT(B3LYP) calculations with a 6-311++G(2d,2p) basis set. The analysis of the experimental spectra indicate that 1:1 complexes trapped in solid argon involve very strong hydrogen bond in which acid acts as the proton donor and water as the proton acceptor. The perturbed OH stretches are −248, −228 cm−1 red shifted from their free-molecules values in complexes formed by trans- and cis-HONO isomers, respectively. The calculated spectral parameters for the two complexes are in good agreement with experimental data. The calculations also predict stability of two more 1:1 weakly bound complexes formed by each isomer. In these the water acts as the proton donor and one of the two oxygen atoms of the acid as the acceptor. The experimental spectra demonstrate also formation of 2:1 complex between water and trans-HONO isomer in an argon matrix. The performed calculations indicate that the complex involves a seven-membered ring in which OH group of HONO forms very strong hydrogen bond with the oxygen atom of one water molecule and nitrogen atom acts as a weak proton acceptor for the hydrogen atom of the second water molecule of the water dimer. The observed perturbations of the OH stretch of trans-HONO (750 cm−1 red shift) is much larger than that predicted by calculations (556 cm−1 red shift); this difference is attributed to strong solvation effect of argon matrix on very strong hydrogen bond.  相似文献   

12.
Reduction of trans-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XI) by lithium tri-t-butoxyaluminohydride gave trans-1β-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XII) which on lithium—liquid ammonia reduction gave trans-anti-1β-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XIII). Reduction of cis-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XV) by sodium borohydride gave cis-1-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XVI) which on lithium—liquid ammonia reduction gave cis-syn-1-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XVII).  相似文献   

13.
Several ruthenium(II) mono(acetylides) trans-[Cl(dppe)2Ru---(CC)n---R] (n=1–4; R=SiMe3, H) and bis(acetylide) trans-[(dppe)2Ru(---(CC)2---R)2] (R=SiMe3, H) were selectively obtained and could be used as a new set of building blocks for rigid rod-like structures and further assemblies. Especially, the oxidative coupling of trans-[Cl(dppe)2Ru---(CC)3---H] with Cu(OAc)2 led to the formation of the first Ruthenium(II) binuclear species with 12 carbon atoms between the remote metals. This compound shows two reversible redox processes.  相似文献   

14.
The photochemical reactivity of cis- and trans-2-(p-carboxybenzyl)-2,6-diphenyl-6-vinylcyclohexanone, cis-1 and trans-1, was investigated in solution and in the crystalline solid state. Photochemical decarbonylation in solution proceeded in excellent yields to give cis- and trans-1-(p-carboxybenzyl)-1,2-diphenyl-2-vinylcyclopentanes cis-2 and trans-2 along with 3-(p-carboxybenzyl)-1,3-diphenylcycloheptene 3. Reactions in crystals were suppressed by a stereospecific quenching interaction between the benzyl substituent and the carbonyl oxygen in the crystalline ketone.  相似文献   

15.
The effects of cis- and trans-1,2-, trans-1,4-cyclohexanedicarboxylic acid, 95% cis-1,3,5-cyclohexane tricarboxylic acid and cis-1,2,3,4,5,6-cyclohexanehexacarboxylic acid on the yield stress–pH behaviour of concentrated ZrO2 dispersions are reported. Adsorbed cis-1,2,3,4,5,6-cyclohexanehexacarboxylic acid imparts predominantly steric interactions. It forms a steric barrier keeping the interacting particles apart. Adsorbed cis- and trans-1,2 increase the maximum yield stress and this was attributed to a hydrophobic force resulting from the part of the cyclohexane ring sticking out into the solution which is devoid of charged or hydrophilic group. Adsorbed trans-1,4 increases the maximum yield stress by at least threefold and its configuration favours strong bridging interaction with an adjacent particle. Predominantly, cis-1,3,5 also increases the maximum yield stress but only by 60% at the same additive concentration. This was attributed to a smaller degree of bridging.  相似文献   

16.
The Diels-Alder condensation of (−)-dimenthyl fumarate with butadiene followed by reduction of the adduct with LiAlH4, produced (−)-(1R:2R)-4-cyclohexene-trans-1,2-dimethanol in 1–3% optical purity depending on the temperature used to carry out the reaction. However, when AlCl3, SnCl4 or TiCl4 are used to catalyze the reaction then the condensation occurs at much lower temperatures and the product after reduction with LiA1H4 has the opposite sign and configuration. Furthermore the optical purity of the product ranges from 27–78% depending on reaction conditions. Parameters such as solvent, temperature and catalyst, as they affect asymmetric syntheses, are discussed.  相似文献   

17.
The energy and force field for the planar cis and trans conformers of thionformic acid have been calculated using the 4–31 G basis set, augmented by a complete set of d-functions on the sulfur atom, with full geometry optimization. Extensive comparisons are made between the changes in geometry and selected force constants in going from cis- (chain) to the trans- (ring) structures of thionformic, thiolformic and formic acid. These changes are discussed in terms of a hydrogen bonding type of interaction in the O---HS, S---HO and O---HO structural units respectively. Of the thioacid conformers, the trans-thiol is found to be the most stable; the trans-thion and cis-thiol both about 10 kJ mol−1 less stable; and the cis-thion the least stable by about 38 kJ mol−1.  相似文献   

18.
Inter-oxygen distances and conformational flexibility were estimated for cis- and trans-1,2-acenaphthenediol from X-ray data, intramolecular hydrogen bonding, the kinetics of glycol cleavage, and cyclization experiments. The optical and NMR spectra of the isomeric dinitrate esters and related compounds in solution showed significant differences. The symmetric and anti-symmetric stretching bands of the nitroxy group occurred at 1276 ± 2 cm−1 and 1639 ± 7 cm−1 respectively in the trans-dinitrate and in ethyl and benzyl nitrates and were shifted to higher frequencies by 9 cm−1 and 16 cm−1 respectively in the cis-dinitrate. The analogy to similar effects observed in cyclic 1,2-diketones, -haloketones, and o-halonitrobenzenes suggested intramolecular interaction of the contiguous nitroxy groups.

The reaction of the dinitrates with pyridine at 25° was pseudo first-order and the ratio ktrans/kcis of 6·5 was consistent with an ECO mechanism involving nitroxy group interaction in the cis isomer.  相似文献   


19.
The Monsanto acetic acid process is one of the most effective ways to produce acetic acid industrially. This process has been studied experimentally but theoretical investigations are so far sparse. In the current work the active catalytic species [Rh(CO)2I2] (1) and its isomerisation has been studied theoretically using the hybrid B3LYP exchange and correlation functional. Similar calculations has been performed for the iridium complex [Ir(CO)2I2] (2) that also is catalytically active in the methanol carbonylation. Experimental work has confirmed the existence of the cis forms of the active catalytic species, but they do not rule out the possibility of the trans isomers. Our gas phase results show that cis-1 has 4.95 kcal/mol lower free energy than trans-1, and cis-2 has 10.39 kcal/mol lower free energy than trans-2. In the case of rhodium, trans-1 can take part to the catalytic cycle but in case of iridium this is not very likely. We have also investigated the possible mechanisms of the cis to trans conversions. The ligand association mechanism gave free energy barrier of 13.7 kcal/mol for the rhodium complex and 19.8 kcal/mol for iridium. Thus the conversion for the rhodium complex is feasible whereas for iridium it is unlikely.  相似文献   

20.
The π-allyltricarbonyliron lactone complex (7), formed by reaction of E-1,2-epoxy-2-methyl-6,6-dimethoxyhex-3-ene(5) with co-ordinatively unsaturated iron carbonyl species, was reacted with benzylamine to give a lactam complex (8) by an SN'-like mechanism. This complex upon oxidation with Ce(IV) afforded cis-3-isopropenyl-4-[(2',2'-dim (9) which was chemically modified into trans-3-(1'-hydroxyethyl)-4-[(2',2-dimethoxy)ethyl] azetidin-2-one (13), a key intermediate previously used in the synthesis of the antibiotic thienamycin. Similar reaction with (S)-(-)--methylbenzylamine afforded a separable mixture of diastereoisomeric iron lactam complexes (16 and 17). These complexes could be individually converted to the corresponding optically active β-lactam derivatives (27 and 28) and, hence, are precursors for the synthesis of either natural (+)-thienamycin or unnatural (-)-thienamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号