首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present a method giving the bi-static scattering coefficient of two-dimensional (2-D) perfectly conducting random rough surface illuminated by a plane wave. The theory is based on Maxwell's equations written in a nonorthogonal coordinate system. This method leads to an eigenvalue system. The scattered field is expanded as a linear combination of eigensolutions satisfying the outgoing wave condition. The boundary conditions allow the scattering amplitudes to be determined. The Monte Carlo technique is applied and the bi-static scattering coefficient is estimated by averaging the scattering amplitudes over several realizations. The random surface is represented by a Gaussian stochastic process. Results are compared to published numerical and experimental data. Comparisons are conclusive.  相似文献   

2.
We present a method giving the bi-static scattering coefficient of two-dimensional (2-D) perfectly conducting random rough surface illuminated by a plane wave. The theory is based on Maxwell's equations written in a nonorthogonal coordinate system. This method leads to an eigenvalue system. The scattered field is expanded as a linear combination of eigensolutions satisfying the outgoing wave condition. The boundary conditions allow the scattering amplitudes to be determined. The Monte Carlo technique is applied and the bi-static scattering coefficient is estimated by averaging the scattering amplitudes over several realizations. The random surface is represented by a Gaussian stochastic process. Results are compared to published numerical and experimental data. Comparisons are conclusive.  相似文献   

3.
The optical wave scattering from one-dimensional (1D) lossy dielectric Gaussian random rough surface is studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the shadowing effect is also taken into account to make the KA results have a high accuracy. The definition of the bistatic scattering coefficient of the modified KA and the method of moment (MOM) are unified. The characteristics of the optical wave scattering from the lossy dielectric Gaussian random rough surface of different parameters are analyzed by implementing MOM.  相似文献   

4.
For the development of millimeter wave imaging systems, it is important to be able to simulate some representative scattering configurations. Typically, Gaussian beams are used in active imaging systems. Since these beams only illuminate a spatially limited region, many objects can be treated as infinitely long 2D (in)homogenous cylinders. However, the incident Gaussian beams have a 3D character. Therefore, a dedicated 2.5D scattering simulator was developed. In this paper, simulation results obtained with this simulator are compared to measurements obtained from a bi-static microwave set-up and from a W-band millimeter wave set-up. Comparison of simulations and measurements proves that the 2.5D algorithm is a good simulation tool to study scattering of long inhomogeneous cylinders, illuminated by 3D plane waves or 3D Gaussian beams under different elevation angles.  相似文献   

5.
两个相邻目标对平面波、高斯波束的光散射   总被引:3,自引:0,他引:3  
王运华  郭立新  吴振森 《光学学报》2007,27(9):1711-1718
基于等效原理和互易性定理研究了两个靠近目标对平面波、高斯波束的光散射问题,给出了这一复合光散射模型的二阶散射结果。通常一阶散射结果容易求解,但由于耦合效应的复杂性,很难给出二阶散射结果的解析形式。为了解决这一问题,应用互易性定理给出了求解任意相邻介质目标二阶散射场的公式,同时借助等效原理将求解散射场公式中的体积分简化为面积分的形式,从而降低了求解难度。求解了两相邻球形粒子的复合散射场,并将求解结果与应用时域积分方程法求得的结果进行了比较。同时,还讨论了束腰半径、目标位置对散射截面及偏振度的影响。  相似文献   

6.
We consider a dielectric plane surface with a local cylindrical perturbation illuminated by a monochromatic plane wave. The perturbation is represented by a random function assuming values with a Gaussian probability density with zero mean value. Outside the perturbation zone, the scattered field can be represented by a superposition of a continuous spectrum of outgoing plane waves. The stationary phase method leads to the asymptotic field, the angular dependence of which is given by the scattering amplitudes of the propagating plane waves. The small perturbation method applied to the Rayleigh integral and the boundary conditions gives a first-order approximation of the scattering amplitudes. We show that the real part and the imaginary part of the scattering amplitudes are Gaussian stochastic variables with zero mean values and unequal variances. The values of variances depend on the length of the perturbation zone. In most cases, the probability density function for the amplitude is a Hoyt distribution and the phase is not uniformly distributed between -π and π. The standard Rayleigh and uniform distributions are obtained for special values of the length and in the case of an infinite illumination length.  相似文献   

7.
We consider a dielectric plane surface with a local cylindrical perturbation illuminated by a monochromatic plane wave. The perturbation is represented by a random function assuming values with a Gaussian probability density with zero mean value. Outside the perturbation zone, the scattered field can be represented by a superposition of a continuous spectrum of outgoing plane waves. The stationary phase method leads to the asymptotic field, the angular dependence of which is given by the scattering amplitudes of the propagating plane waves. The small perturbation method applied to the Rayleigh integral and the boundary conditions gives a first-order approximation of the scattering amplitudes. We show that the real part and the imaginary part of the scattering amplitudes are Gaussian stochastic variables with zero mean values and unequal variances. The values of variances depend on the length of the perturbation zone. In most cases, the probability density function for the amplitude is a Hoyt distribution and the phase is not uniformly distributed between –π and π. The standard Rayleigh and uniform distributions are obtained for special values of the length and in the case of an infinite illumination length.  相似文献   

8.
The curvilinear coordinate method is applied for analysing 2-D dielectric random rough surfaces. The theory is based on Maxwell's equations written in a non-orthogonal coordinate system. For each medium, this method leads to an eigenvalue system. The scattered fields within two media are expanded as linear combinations of eigensolutions satisfying the outgoing wave condition. The boundary conditions allow the scattering amplitudes to be determined. The coherent and incoherent intensities are estimated by averaging the scattering amplitudes over several realizations. The theory is verified by comparison with results obtained by other exact method. A discussion on the C-method and the Sparse-Matrix CAnonical Grid method is proposed in terms of accuracy and computation time.  相似文献   

9.
刘涛  黄高明  王雪松  肖顺平 《物理学报》2009,58(5):3140-3153
Weibull分布的雷达极化回波特征由三个分布参数来描述:波的强度、极化椭圆率角以及椭圆倾角.在瞬态极化理论的基础上,推导了三个分布参数的联合概率密度函数,标准Stokes矢量统计分布的联合概率密度函数及其边缘概率密度函数,并通过蒙塔卡罗方法进行了计算机仿真,结果验证了理论推导的正确性.Weibull分布随机极化电磁波瞬态极化统计特性的研究对高分辨条件下雷达目标的检测、识别和跟踪领域都有一定的理论指导意义. 关键词: Weibull分布 极化椭圆参数 标准Stokes矢量 统计  相似文献   

10.
针对随机起伏冰面的声散射计算问题,利用修正反射系数的Kirchhoff近似方法计算了高斯起伏冰面的三维声散射。在计算模型中引入了冰面局部统计平均反射系数的概念,将二维高斯起伏冰面的散射分为相干散射和非相干散射,分别得到两类散射成分的散射系数公式,计算了高斯起伏冰面三维声散射的散射强度。分析了散射强度与随机起伏冰面的均方根高度、声波入射角度及频率的关系。通过实验室水池中高斯起伏冰面的散射强度测量实验,对理论模型的计算结果进行了验证。将实验结果分别与采用冰面局部统计平均反射系数的模型计算结果和文献中采用平整冰面镜反射系数的模型计算结果进行了对比,采用冰面局部统计平均反射系数的模型计算结果与实验测量值吻合较好。   相似文献   

11.
任新成  郭立新 《应用光学》2008,29(1):144-151
运用微扰法研究平面波入射分层介质粗糙面的光波透射问题,推出了不同极化状态的透射光波散射系数公式。采用高斯粗糙面来模拟实际的分层介质粗糙面,结合高斯粗糙面的功率谱导出了平面波入射高斯分层介质粗糙面的透射系数计算公式。通过数值计算得到HH极化透射系数随透射光波散射角变化的曲线,讨论底层介质介电常数、中间介质介电常数和厚度、粗糙面参数及入射光波长对透射系数的影响。数值计算结果表明:底层介质介电常数、中间介质介电常数和厚度、粗糙面参数及入射光波长对透射系数的影响是非常复杂的。  相似文献   

12.
Based on the invariant imbedding method, we study numerically the statistical characteristics of the kernel of the backscattering operator in the case of normal incidence of a plane wave on a one-dimensional random medium with strong fluctuation intensities and various correlation radii of the irregularities. The local reflection coefficient of the medium is modelled by a centered Gaussian process with an exponential correlation function. The first eight one-point cumulants and the correlation functions of delta-pulse reflection are considered and the fluctuation phenomena are analyzed. The transition to the diffusion scattering regime is studded, and the numerical results are compared with the known analytical solutions.  相似文献   

13.
李正军  吴振森  李焕  李海英 《中国物理 B》2011,20(8):81101-081101
Based on spherical vector wave functions and their coordinate rotation theory,the field of a Gaussian beam in terms of the spherical vector wave functions in an arbitrary unparallel Cartesian coordinate system is expanded.The beam shape coefficient and its convergence property are discussed in detail.Scattering of an arbitrary direction Gaussian beam by multiple homogeneous isotropic spheres is investigated.The effects of beam waist width,sphere separation distance,sphere number,beam centre positioning,and incident angle for a Gaussian beam with two polarization modes incident on various shaped sphere clusters are numerically studied.Moreover,the scattering characteristics of two kinds of shaped red blood cells illuminated by an arbitrary direction incident Gaussian beam with two polarization modes are investigated.Our results are expected to provide useful insights into particle sizing and the measurement of the scattering characteristics of blood corpuscle particles with laser diagnostic techniques.  相似文献   

14.
王蕊  郭立新  麻军 《中国物理 B》2009,18(8):3422-3430
Electromagnetic wave scattering from multilayers consisting of two two-layer Gaussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.  相似文献   

15.
The propagation of time-harmonic plane elastic waves in infinite elastic composite materials consisting of linear elastic matrix and rigid penny-shaped inclusions is investigated in this paper. The inclusions are allowed to translate and rotate in the matrix. First, the three-dimensional (3D) wave scattering problem by a single inclusion is reduced to a system of boundary integral equations for the stress jumps across the inclusion surfaces. A boundary element method (BEM) is developed for solving the boundary integral equations numerically. Far-field scattering amplitudes and complex wavenumbers are computed by using the stress jumps. Then the solution of the single scattering problem is applied to estimate the effective dynamic parameters of the composite materials containing randomly distributed inclusions of dilute concentration. Numerical results for the attenuation coefficient and the effective velocity of longitudinal and transverse waves in infinite elastic composites containing parallel and randomly oriented rigid penny-shaped inclusions of equal size and equal mass are presented and discussed. The effects of the wave frequency, the inclusion mass, the inclusion density, and the inclusion orientation or the direction of the wave incidence on the attenuation coefficient and the effective wave velocities are analysed. The results presented in this paper are compared with the available analytical results in the low-frequency range.  相似文献   

16.
The scattering of an electromagnetic wave from a random cylindrical surface ir studied for a plane-wave incidence with S-(TE) polarization, by means ofthe stochastic scattering theory developed by Nakayama, Ogura. Sakati et al. The theory is based on the Wiener-Ito stochastic functional calculus combined with the group-theoretic consideration concerning the homogeneity of the random surface. The random surface is assumed to be a homogeneous Gaussian random field on the cylinder C, homogeneous with respect to the group of motiolrs on C: translations along the axis and rotations around the axis. An operator D operating on a random field on C is introduced in such a way that D keeps the homogeneous random surface invariant This gives a reprerentation of the cylbdrical group and commutes with the boundary condition and the Maxwell equation. Thus, for an injection of the mth cylindrical TE or TM wave, which is a vector eigenfunction of the D operator, the scattered random wave field is an eigenfunctiou with the same eigenvalue: it satisfies the Maxwell equation and is a stoch-tic Iunctional of the Gaussian random surface, BO that it can be expressed in a vector form of the Wiener-Ito expansion in t e m of TE and TM waves and orthogonal functional. of the Gaussian random measures associated with the random cylindrical surface. In the analysis the random surface is modelled by an approximate boundaiy condition representing a perfectly conducting cylindrical surface with a slight roughness. The boundary condition on the random cylinder is transformed into a hierarchy of equations for the Wiener kernels which can be solved approximately. The random wave field for a plane-wave injection is obtained by summing these fields over m. From the stochastic representation of the electromagnetic field so obtained, various statistical characteristics can be calculated the coherent scattering amplitude. total coherent power flow, incoherent power flow, differential sections for coherent rcatlerhig and incoherent scattering, etc. The power conservation law is cast into a stochastic electromagnetic version of the optical theorem stating that the total scatteiing cross section is given by the imaginary part of the forward coherent scattering amplitude. Numerical calculations are made for a planewave injection with S-(TE) polarization. The case of p-(TM) polarization can be treated in a similar manner.  相似文献   

17.
Abstract

The small-slope approximation (SSA) for wave scattering at the rough interface of two homogeneous half-spaces is developed. This method bridges the gap between two classical approaches to the problem: the method of small perturbations and the Kirchhoff (or quasi-classical) approximation. In contrast to these theories, the SSA is applicable irrespective of the wavelength of radiation, provided that the slopes of roughness are small compared with the angles of incidence and scattering.

The resulting expressions for the SSA are given for the entries of an S-matrix that represents the scattering amplitudes of plane waves of different polarizations interacting with the rough boundary. These formulae are quite general and are valid, in fact, for waves of different origins. Apart from the shape of the boundary, some functions in these formulae are coefficients of the expansion of the S-matrix into a power series in terms of elevations. These roughness independent functions are determined by a specific scattering problem. In this paper they are calculated for the case of electromagnetic scattering at the interface of two dielectric half-spaces. In contrast to an earlier paper by the author, where only the formulae for the reflected field were presented, in this paper both reflected and transmitted fields are considered in detail.

The a priori symmetry relations that this scattering problem should obey (reciprocity and energy conservation) are formulated in terms of the S-matrix.

The statistical moments of scattering amplitudes are directly related to the mean-reflection coefficient and scattering cross sections, which are usually determined experimentally. The corresponding formulae are given here for the case of Gaussian space-homogeneous statistics of roughness.  相似文献   

18.
The relations between the specular reflection component of the intensity scattered by random surfaces and the height distributions of the surfaces are analyzed theoretically. In the extraction of the height distribution, both the phase and the amplitude of the specular wave are required. The measured specular intensity data versus the perpendicular component of the wave vector are used for the retrieval of the phase distribution of the specular wave, in which the Ger-chberg-Saxton iterative algorithm is employed, and the characterization of the height distribution of random surfaces is accomplished. In the experiment, two samples with Gaussian and quasi-two level height distributions, respectively, are practically measured and the results of the height probability density function obtained by light scattering method are in good accordance with those by atomic force microscopy. The method of this paper is of important significance for the characterizations and studies of random surfaces.  相似文献   

19.
This paper introduces a method for determining the transmission coefficient for finite coupled plates using an analytical waveguide model combined with a scattering matrix. In the scattering matrix method, the amplitudes of the structural waves impinging on a junction are separated into incident, reflected, and transmitted components. The energy flow due to each of these waves is obtained using a wave impedance method, which is subsequently used to determine the transmission coefficient. Transmission coefficients for semi-infinite and finite L-shaped plates are investigated for single and multiple point force excitations, and for controlled incident wave sources. It is shown that the transmission coefficients can also be calculated from details of the modal transmission coefficients and the modal composition of the energy incident on the junction. Results show that the modal transmission coefficients are largely independent of whether the plates have finite or semi-infinite boundary conditions, and are only dependent on the details of the coupling. Finally, frequency averaged transmission coefficients are compared for semi-infinite and finite structures. In the cases considered, it is found that the semi-infinite system is a good approximation for finite systems after frequency averaging, especially if the system is excited with multiple point force excitation.  相似文献   

20.
This paper deals with a scalar plane wave scattering from a thin film with two-dimensional fluctuation by means of the stochastic functional approach. The refractive index of the thin film is written as a Gaussian random field in the transverse directions with infinite extent, and is invariant in the longitudinal direction with finite thickness. An explicit form of the random wavefield involving effects of multiple scattering is obtained in terms of a Wiener-Hermite expansion under small fluctuation. The first- and second-order incoherent scattering cross-sections are calculated numerically and illustrated in figures. In the incoherent scattering, scattering ring, quasi-anomalous scattering, enhanced scattering and gentle enhanced scattering may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号