首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Wu Y  Wang N  Li L  Xiao J 《Chaos (Woodbury, N.Y.)》2012,22(2):023146
This paper mainly investigates the anti-phase synchronization of two coupled mechanical metronomes not only by means of numerical simulations, but also by experimental tests. It is found that the attractor basin of anti-phase synchronization enlarges as the rolling friction increases. Furthermore, this paper studies the relationship between different initial conditions and synchronization types. The impacts of rolling friction on in-phase and anti-phase synchronization times are also discovered. Finally, in-phase and anti-phase synchronization conditions of non-identical metronomes are discussed. These results indicate the potential complexity of the dynamics of coupled metronomes.  相似文献   

2.
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.  相似文献   

3.
The synchronization dynamics of two linearly coupled pendula is studied in this paper. Based on the Lyapunov stability theory and Linear matrix inequality (LMI); some necessary and sufficient conditions for global asymptotic synchronization are derived from which an estimated threshold coupling kth, for the on-set of full synchronization is obtained. The numerical value of kth determined from the average energies of the systems is in good agreement with theoretical analysis. Prior to the on-set of synchronization, the boundary crisis of the chaotic attractor is identified. In the bistable states, where two asymmetric periodic attractors co-exist, it is shown that the coupled pendula can attain multistable states via a new dynamical transition—the basin crisis that occur prior to the on-set of stable synchronization. The essential feature of basin crisis is that the two co-existing attractors are destroyed while new three or more co-existing attractors of the same or different periodicity are created. In addition, the linear perturbation technique and the Routh-Hurwitz criteria are employed to investigate the stability of steady states, and clearly identify the different types of bifurcations likely to be encountered. Finally, two-parameter phase plots, show various regions of chaos, hyperchaos and periodicity.  相似文献   

4.
We study the dynamics of two self-oscillating systems inertially coupled to a linear oscillator. This interaction mechanism results in various types of synchronous motions such as in-phase, anti-phase and phase synchronization. We demonstrate the existence of mono-stable regimes and multi-stable behavior with two or more coexisting attractors. We present the bifurcational analysis revealing transition mechanisms between these regimes. In the multi-stable case, we examine the role of coupling parameter and shape of oscillations (the parameter indicating nonlinearity and strength of the damping) in various structure formations of attraction basins.  相似文献   

5.
We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength. This results in a maximal frequency disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic decrease in frequency difference sets in only for larger coupling values. All experimental results are supported by numerical simulations of two coupled Chua models.  相似文献   

6.
We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase(BS), spike phase(SS),complete(CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameterdependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength.  相似文献   

7.
杨科利 《物理学报》2016,65(10):100501-100501
本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.  相似文献   

8.
Xia Shi  Qishao Lu 《Physica A》2009,388(12):2410-2419
Burst synchronization and burst dynamics of a system consisting of two map-based neurons coupled through electrical or chemical synapses are discussed. Some basic characteristic quantities are introduced to describe burst synchronization and burst dynamics of neurons. It is observed that excitatory coupling leads to in-phase burst synchronization but inhibitory coupling results in anti-phase one. By using the basic characteristics of burst dynamics, the effects of the intrinsic bursting properties and the coupling schemes on complex bursting behaviors are also presented for both inhibitory and excitatory couplings. The results are instructive to identify bursting behaviors through experimental data.  相似文献   

9.
We investigate the dynamics of a population of globally coupled FitzHugh-Nagumo oscillators with a time-periodic coupling strength. While for synchronizing global coupling, the in-phase state is always stable, the oscillators split into several cluster states for desynchronizing global coupling, most commonly in two, irrespective of the coupling strength. This confines the ability of the system to form n:m locked states considerably. The prevalence of two and four cluster states leads to large 2:1 and 4:1 subharmonic resonance regions, while at low coupling strength for a harmonic 1:1 or a superharmonic 1:m time-periodic coupling coefficient, any resonances are absent and the system exhibits nonresonant phase drifting cluster states. Furthermore, in the unforced, globally coupled system the frequency of the oscillators in a cluster state is in general lower than that of the uncoupled oscillator and strongly depends on the coupling strength. Periodic variation of the coupling strength at twice the natural frequency causes each oscillator to keep oscillating with its autonomous oscillation period.  相似文献   

10.
In this paper, we consider the spatiotemporal dynamics in a ring of N mutually coupled self-sustained oscillators in the regular state. When there are no parameter mismatches, the good coupling parameters leading to full, partial, and no synchronization are derived using the properties of the variational equations of stability. The effects of the spatial dimension of the ring on the stability boundaries of the synchronized states are performed. Numerical simulations validate and complement the results of analytical investigations. The influences of coupling parameter mismatch on the forecasted stability boundaries are also highlighted.  相似文献   

11.
YAN  Sen-Lin 《理论物理通讯》2011,55(3):481-488
We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but detuning, in detain. It is proved that the coupling level determines stability of the lasers by analyzing the eigenvalueequation. Critical case of locking is discussed via the phase difference equation. Quasi-period and stable states in the two lasers are investigated via varying the current, detuning and coupling level.  相似文献   

12.
黄霞  徐灿  孙玉庭  高健  郑志刚 《物理学报》2015,64(17):170504-170504
本文讨论了一维闭合环上Kuramoto相振子在非对称耦合作用下同步区域出现的多定态现象. 研究发现在振子数N≤3情形下系统不会出现多态现象, 而N≥4多振子系统则呈现规律的多同步定态. 我们进一步对耦合振子系统中出现的多定态规律及定态稳定性进行了理论分析, 得到了定态渐近稳定解. 数值模拟多体系统发现同步区特征和理论描述相一致. 研究结果显示在绝热条件下随着耦合强度的减小, 系统从不同分支的同步态出发最终会回到同一非同步态. 这说明, 耦合振子系统在非同步区由于运动的遍历性而只具有单一的非同步态, 在发生同步时由于遍历性破缺会产生多个同步定态的共存现象.  相似文献   

13.
The dynamic behavior of coupled chaotic oscillators is investigated. For small coupling, chaotic state undergoes a transition from a spatially disordered phase to an ordered phase with an orientation symmetry breaking. For large coupling, a transition from full synchronization to partial synchronization with translation symmetry breaking is observed. Two bifurcation branches, one in-phase branch starting from synchronous chaos and the other antiphase branch bifurcated from spatially random chaos, are identified by varying coupling strength epsilon. Hysteresis, bistability, and first-order transitions between these two branches are observed.  相似文献   

14.
Synaptically coupled neurons show in-phase or antiphase synchrony depending on the chemical and dynamical nature of the synapse. Deterministic theory helps predict the phase differences between two phase-locked oscillators when the coupling is weak. In the presence of noise, however, deterministic theory faces difficulty when the coexistence of multiple stable oscillatory solutions occurs. We analyze the solution structure of two coupled neuronal oscillators for parameter values between a subcritical Hopf bifurcation point and a saddle node point of the periodic branch that bifurcates from the Hopf point, where a rich variety of coexisting solutions including asymmetric localized oscillations occurs. We construct these solutions via a multiscale analysis and explore the general bifurcation scenario using the lambda-omega model. We show for both excitatory and inhibitory synapses that noise causes important changes in the phase and amplitude dynamics of such coupled neuronal oscillators when multiple oscillatory solutions coexist. Mixed-mode oscillations occur when distinct bistable solutions are randomly visited. The phase difference between the coupled oscillators in the localized solution, coexisting with in-phase or antiphase solutions, is clearly represented in the stochastic phase dynamics.  相似文献   

15.
We investigate the effect of frequency mismatch in two indirectly coupled Rössler oscillators and Hindmarsh–Rose neuron model systems. While identical systems show in-phase or out-of-phase synchronization states when coupled through a dynamic environment, mismatch in the internal frequencies of the systems drives them to a fixed point state, i.e., amplitude death. There is a region in the parameter space of the frequency mismatch and coupling strength where system shows amplitude death. The numerical results of Rössler system are also experimentally verified using piece-wise Rössler circuits.  相似文献   

16.
We theoretically study the synchronization between collective oscillations exhibited by two weakly interacting groups of nonidentical phase oscillators with internal and external global sinusoidal couplings of the groups. Coupled amplitude equations describing the collective oscillations of the oscillator groups are obtained by using the Ott-Antonsen ansatz, and then coupled phase equations for the collective oscillations are derived by phase reduction of the amplitude equations. The collective phase coupling function, which determines the dynamics of macroscopic phase differences between the groups, is calculated analytically. We demonstrate that the groups can exhibit effective antiphase collective synchronization even if the microscopic external coupling between individual oscillator pairs belonging to different groups is in-phase, and similarly effective in-phase collective synchronization in spite of microscopic antiphase external coupling between the groups.  相似文献   

17.
王立明  吴峰 《物理学报》2013,62(21):210504-210504
研究了耦合分数阶振子的同步、反同步和振幅死亡等问题. 基于P-R振子在特定参数下的双稳态特性, 利用最大条件Lyapunov指数、最大Lyapunov指数和分岔图等数值方法分析发现, 通过选取初始条件和耦合强度, 可以控制耦合振子呈现混沌同步、混沌反同步、全部振幅死亡同步、全部振幅死亡反同步和部 分振幅死亡等丰富的动力学现象. 基于蒙特卡罗方法的原理, 在初始条件相空间中随机选取耦合振子的初始位置, 计算不同耦合强度下耦合振子的全部振幅死亡态、部分振幅死亡态和非振幅死亡态的比例, 从统计学角度表征了耦合分数阶双稳态振子的动力学特征. 几种有代表性的双稳态振子的吸引域进一步证明了统计方法的计算结果. 关键词: 振幅死亡 吸引域 双稳态  相似文献   

18.
谭红芳  金涛  屈世显 《物理学报》2012,61(4):40507-040507
本文研究了一类既不连续又不可逆分段线性映像构成的全局耦合映像格子系统中的一类典型集体动力学行为, 即冻结化随机图案模式. 计算了平均同步序参量和最大李雅普诺夫指数随耦合强度的变化. 结果显示, 当耦合强度超过某个阈值后, 在给定动力学变量的初始下, 系统几乎都能达到完全或部分同步状态, 出现冻结化随机图案. 这些现象表明, 耦合映像格子系统中存在着多个共存的吸引子. 因此, 其冻结化图案的结构和分布敏感地依赖于格点动力学变量初始值的选取. 感兴趣地是, 即使当单映像处于混沌状态时, 格点间的耦合仍能将系统调制到规则的运动状态, 这种特征对于混沌控制具有重要的利用价值. 上述丰富动力学行为的出现是由于单映像中不连续性和不可逆性相互作用的结果.  相似文献   

19.
Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number (\(1\le i \le m-1\)) of state variables completely and keep constant difference between j (\(1\le j\le m-1\), \(i+j=m\)) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme.  相似文献   

20.
Coupling delays may cause drastic changes in the dynamics of oscillatory networks. In the present paper we investigate how coupling delays alter synchronization processes in networks of all-to-all coupled pulse oscillators. We derive an analytic criterion for the stability of synchrony and study the synchronization areas in the space of the delay and coupling strength. Specific attention is paid to the scenario of destabilization on the borders of the synchronization area. We show that in bifurcation points the system possesses homoclinic loops, which give rise to complex long- or quasi-periodic solutions. These newly born solutions are characterized by a synchronous group, from which an oscillator periodically escapes, laps one period, and rejoins. We call such a dynamical regime “phase slip patterns”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号