首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of gaseous epichlorohydrin has been investigated using electron diffraction data obtained at 67°C. The conformational composition at this temperature is such that the molecules exist predominantly in a gauche-2 conformer (where the C---Cl bond is 160° away from the C---O) bond). Refinements showed that 33% (σ = 4) of the molecule exist in the gauche-1 form. The important distances (rg) and angle () with the associated uncertainties are r(C---H) = 1.095(5) Å, r(C---O) = 1.442(3) Å, r(C---C) = 1.475(8) Å, r(C---CM) = 1.523(7) Å, r(C---Cl) = 1.788(2) Å, CCO = 114° (1), CCCM = 119°(1), ClCC = 108.9° (7), and Tau(ClCCO) = −150°(10) (gauche-2) and Tau(ClCCO) = 78° (10) (gauche-1).  相似文献   

2.
The structure of silyi formate, HCOOSiH3, in the gas phase is determined by electron diffraction. The principal bond lengths and angles (ra) are r(Si-O) = 169.5 ± 0.3 pm, r(C-O) = 135.1 ± 0.6 pm, r(C  O) = 120.9 ± 0.7 pm, ∠(C-O-Si) = 116.8 ± 0.5°, ∠(OC-O) = 123.5 ± 0.5°. The silyi group is twisted by 21° away from the planar cis conformation but there is nevertheless a very short (286.5 ±1.0 pm) non-bonded Si ·O contact.  相似文献   

3.
The electron-diffraction data for gaseous oxepane, collected at 310 K, can be explained in terms of a 53:47% mixture of two twist-chair conformations. Using the nomenclature of Crerner and Pople [1], the conformations are characterised by q2 = 0.579 å, q3 = 0.685 Å, φ2 = 13.3°, φ3, = 63.0° and q2 = 0.511 Å. q3 = 0.588 Å, ø2 = 116.1°, ø3 = 217.6°. The other structural parameters (ra-structure) are rCO = 1.419 Å, rcc = 1.531 Å, rCH = 1.105 Å, ∠H-C-H = 106.0°, with a mean ring valency angle of 112-0° for the former conformation, and of 116.2° for the latter. There is a good agreement between the experimental geometries and the results from molecular mechanics calculations.  相似文献   

4.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

5.
The rg structure of cyclopentene oxide has been determined by the simultaneous least squares analysis of electron diffraction and microwave spectroscopic data. The investigation has reaffirmed previous studies indicating that the molecule prefers a boat conformation. The methylene and epoxide flap angles obtained are 152.3±2.1° and 104.7±1.0° respectively. Other structural parameters determined are: rg (C-H avg.) = 1.120±0.004 Å; rg (C-C avg.) = 1.538±0.002 Å; rg (C-O) = 1.443±0.003 Å, and rg (C-C) = 1.482±0.004 Å for the carbon-carbon bond in the three membered epoxide ring. These results compare favorably with the reported structures of ethylene oxide and cyclohexene oxide. A tentative rationalization of the unusual boat conformation is also offered.  相似文献   

6.
A gas phase electron diffraction study of 3-bromo-2-methyl-1-propene shows that there is predominantly a gauche conformer present. Data recorded at 20 and 180°C show 4(8) and 5(4)% respectively of a second confomer with a planar heavy atom skeleton. The gauche structural results in terms of ra distances and angles at 20°C were found to be: r(C---C) = 1.331(9) Å, r(C---CH2Br) = 1.484(6) Å, r(C---CH3) — r(C---CH2Br) = 0.017 Å, (assumed), r(C---Br) = 1.965(6) Å, C=C---CH2Br = 121.5(0.7)°, C=C---CH2Br — C=C---CH3 = 0.7° (constraint from molecular mechanics calculation), C---C---Br = 112.2(0.5)°, torsional ANGLE = 112.5(2.2)°. Uncertainties are given as 2σ, where σ includes uncertainties due to correlation among observations, electron wavelength and other parameters used in the data reduction. The results obtained from the 180°C data agree very well with those given above. The molecular mechanics calculations yield information consistent with the experimental results.  相似文献   

7.
The structure of 1-methyl-1-silaadamantane (MSA) has been determined by gas phase electron diffraction. There appears to be somewhat less ring strain at the silicon bridgehead of MSA than in the previously studied 1-methyl-1-silabicyclo[2.2.1]heptane (MSBH). The average SiC bond length [1.879(3) Å is comparable to those found in acyclic organosilicon systems. Also, the average CC bond length (1.547(2) Å) is only slightly longer than that observed for adamantane (1.540(2) Å). Valence angles at the silicon bridgehead experience only a moderate perturbation away from their unstrained tetrahedral values. On this basis it is expected that MSA should be somewhat less reactive than MSBH under SN2 conditions according to the reaction mechanism suggested by L.H. Sommer.  相似文献   

8.
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°.  相似文献   

9.
The structure of 1,1,1-trimethoxyethane has been studied by electron diffraction in the gas phase. Although this technique cannot discriminate between a GGG (point symmetry C3) and a TGG (C1) conformation, vibrational spectra indicate that in the gas phase the C1 conformer is predominant. Constraints necessary for a satisfactory leastsquares refinement were obtained from molecular mechanics calculations. The molecular geometry as obtained from rα-refinements is as follows (rg distances, rα angles; standard deviations in parentheses): r(C-O central = 1.398 (6) Å, r(C-O)terminal = 1.431(6)Å, r(C-C) = 1.527 (6) Å, r(C-H) = 1.114 (1) Å, ∠(C-O-C) = 114.0 (4)°, ∠(O-C-H) = 110.7 (4)°; the C-C-O and O-C-0 angles around the central carbon range between 106.6° and 113.1°.  相似文献   

10.
11.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

12.
The molecular structure of vinyldimethylchlorosilane has been determined by gas phase electron diffraction at room temperature. The least squares values of the bond lengths (rg) and bond angles (∠α) are : r(CH) = 1.086(6) Å, r(CC) = 1.347(5) Å, r(SiC=) = 1.838(6) Å, r(SiC) = 1.876(3) Å, r(SiCl) = 2.078(2) Å, ∠CCSi = 127.8° (1.2) and ∠=CSiCl = 107° (1). Models with pure syn form and a mixture of syn and gauche gave equally good agreement with the diffraction data.  相似文献   

13.
The molecular structure of bis(chloromethyl) dimethyl silane has been investigated in the gas phase at a nozzle temperature of 60° C. The molecules exist mainly in the GG form with the presence of 30% (+10%, ?20%) AG form. The values of the principal distances (ra) and angles with estimated error limits of 2σ are r(C-H) = 1.093 (0.009) Å, r(C-Cl) = 1.801 (0.019) Å, r(Si-C) (the average Si-C bond) = 1.875 (0.009) Å, ∠(CSiC) = 109.5°, ∠(SiCCl) = 110.5° (0.4), ∠(CCH) = 112.5° (1.8) and φ (the gauche torsion angle relative to 0° for the anti form) = 117.4° (3.8).  相似文献   

14.
The structure of 1,1-difluoroethylene was determined, from gas phase electron diffraction data obtained independently in Leiden and Tokyo and the rotational constants of F2CCH2, F2CCHD and F2CCD2 derived from the microwave study by Chauffoureaux. The two electron diffraction data agreed without significant discrepancy. From a joint least squares analysis of the diffraction and microwave data, the following rg bond distances and rz bond angles were derived: CC = 1.340 ± 0.006 Å, C-F = 1.315 ± 0.003 Å, C-H = 1.091 ± 0.010 Å, ∠C-C-F = 124.7 ± 0.3°, ∠C-C-H = 119.0 ± 0.4°, where the uncertainties represent estimated limits of error.  相似文献   

15.
Chloroacetyl chloride is studied by gas-phase electron diffraction at nozzle-tip tempera- tures of 18, 110 and 215°C. The molecules exist as a mixture of anti and gauche confor- mers with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ is found to be 0.770 (0.070), 0.673 (0.086) and 0.572 (0.086) at 18, 110 and 215°C, respectively. These values correspond to an energy difference with estimated standard deviation ΔEo = Eog -Eoa = 1.3 ± 0.4 kcal mol?1 and an entropy difference ΔSo = Sog -Soa = 0.7 ± 1.1 cal mol?1 K?1. Certain of the diffraction results permit the evaluation of an approximate torsional potential function of the form 2V = V1(1 - cos φ) + V2(1 - cos 2φ) + V3(1 - cos 3φ); the results are V1 = 1.19 ± 0.33, V2 = 0.56 ± 0.20 and V3 = 0.94 ± 0.12, all in kcal mol?1. The results for the distance (ra), angle (∠α) and r.m.s. amplitude parameters obtained at the three temperatures are entirely consistent. At 18°C the more important parameters are, with estimated uncertainties of 2σ, r(C-H) = 1.062(0.030) Å, r(CO) = 1.182(0.004) Å, r(C-C) = 1.521(0.009) Å. r(CO-Cl) = 1.772(0.016) Å, r(CH2-Cl) = 1.782(0.018) Å, ∠C-C-0 = 126.9(0.9)°, ∠CH2-CO-C1 = 110.0(0.7)°,∠CO-CH2-C1 = 112.9(1–7)°, ∠H-C-H = 109.5° (assumed), ∠φ (gauche torsion angle relative to 0° for the anti form) = 116.4(7.7)°, δ (r.m.s. amplitude of torsional vibration in the anti conformer) == 17.5(4.2)°.  相似文献   

16.
The molecular structure of norbornene has been investigated in the gas phase by combining electron diffraction data with microwave spectroscopic rotational constants. The interatomic distances (rg) and bond angles were obtained by applying a least squares program to the refined experimental molecular diffraction intensities. The CC bond length was found to be 1.336 ± 0.002 Å while the
) bond length was 1. 529 ± 0.007 Å. Other bond lengths and angles included (IUPAC numbering system was used for norbornene): C1-C6 = 1.550 ± 0.020 Å, C1-C7 = 1.566± 0.005 Å, C5-C6 = 1.556 ± 0.005 Å, C-Have. = 1.103 ± 0.003 Å, ∠C1C2C4 = 95.3°. The dihedral angle between planes C1C2C3C4 and C1C6C5C4 is 110.8 ± 1.5° while that between C1C2C3C4 and C1C7C4 is 122.3°. The moments of inertia calculated from ED structure are in good agreement with microwave spectroscopic values.  相似文献   

17.
The molecular structure of N(C2H5)2(SiH3) in the gas phase has been determined by electron diffraction. The SiNC2 skeleton is a shallow pyramid, with angles CNC 114.5(12)° and SiNC 120.9(5)°, and the methyl groups lie so that one CC bond lies close to the CNC plane, but the other is almost perpendicular to it. Other important parameters (ra) are: r(SiN) 171.5(3), r(CN) 145.6(4), r(CC) 154.3(8) pm, and ∠NCC 113.6(6)°.  相似文献   

18.
The molecular structure of chloronitromethane was studied in the gas phase at a nozzle-tip temperature of 373 K. The experimental data were interpreted using a dynamic model where the molecules are undergoing torsional motion governed by a potential function: V = V2/2x(1 - cos 2tau) + V4/2x(1 - cos 4tau) with V2 = 0.81(30) and V4 = 0.12(40) kcal/mol (tau is the dihedral angle between the C-Cl and N-O bond). The conformer with a zero degree dihedral angle is the most stable conformer. Comparison with results from HF/MP2/B3LYP 6-311G(d,p) calculations were made. The important geometrical parameter values (for the eclipsed form) obtained from least-squares refinements are the following: r(C-H) = 1.061(18)A, r(C-N) = 1.509 (5)A, r(N-O) = 1.223(1)A, r(C-Cl) = 1.742(2)A, angleClCN = 115.2(7) degrees, angleO4NC = 118.9(10) degrees, angleO5NC = 114.9(16) degrees, and angleClCH 115(4) degrees.  相似文献   

19.
The molecular structure of gaseous 2-cyclopentene-1,4-dione has been studied by electron diffraction. The molecule is planar to within the experimental error. The results obtained for some of the more important parameters with estimated uncertainties of 2σ are r(C-H) = 1.093 Å (0.013), r(C0) = 1.208 Å (0.002), r(CC) = 1.341 Å (0.005), r(CH-CO) = 1.493 Å (0.005), r(CO-CH2) = 1.525 Å (0.005), ∠CC-C = 110.4° (0.3), ∠CH-CO = 124.9° (1.1), ∠CC-H. = 118.7° (5.8), ∠H-C-H = 113.2° (8.7) l(C-H) = 0.0853 A (0.0113), l(CO) = 0.0428 Å (0.0021), l(CC) = 0.0448 Å (0.0037) and l(C-C) = 0.0561 Å (0.0029). The structure is discussed in connection with the structures of related molecules.  相似文献   

20.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号