首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
New Arsinidene-bridged Multinuclear Cluster Complexes of Ag and Au. The Crystal Structures of [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3, PMenPr2, PnPr3), [M4(As4Ph4)2(PR3)4], (M = Ag, PR3 = PEt3, PnPr3; M = Au, PR3 = PnPr3), [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] The reaction of AgCl with PhAs(SiMe3)2 in presence of tertiary phosphines (PR3) leads to arsinidene-bridged silver clusters with the composition [Ag14(AsPh)6Cl2(PR3)8], (PR3 = PEt3 1 , PMenPr2 2 , PnPr3 3 ). Further it is possible to obtain the multinuclear complexes [Ag4(As4Ph4)2(PR3)4], (PR3 = PEt3 4 , PMenPr2 5 ). In analogy to that [PMe3AuCl] reacts with PhAs(SiMe3)2 and PnPr3 to form the compound [Au4(As4Ph4)2(PnPr3)4] 6 , which is isostructurell to 4 and 5 . The gold cluster [Au10(AsPh)4(PhAsSiMe3)2(PnPr3)6] 7 was obtained from the same solution. The structures were characterized by X-ray single crystal structure analysis. (Crystallographic data see “Inhaltsübersicht”)  相似文献   

2.
Heterometallic Complexes with E6 Ligands (E = P, As) The reaction of [Cp*Co(μ-CO)]2 1 with the sandwich complexes [Cp*Fe(η5-E5)] 2 a: E = P, 2 b: E = As in decalin at 190°C affords besides [CpCo2E4] 4: E = P, 7: E = As and [CpFe2P4] 5 the trinuclear complexes [(Cp*Fe)2(Cp*Co)(μ-η2-P2)(μ31:2:1-P2)2] 3 as well as [(Cp*Fe)2(Cp*Co)(μ32:2:2-As3)2] 6 . With [Mo(CO)5(thf)] 3 and 6 form in a build-up reaction the tetranuclear clusters [(Cp*Fe)2(Cp*Co)E6{Mo(CO)3}] 10: E = P, 11: E = As. 3, 6 and 11 have been further characterized by an X-ray crystal structure determination.  相似文献   

3.
Summary Reaction of MoCl5 or WCl6 with 1-methyl-1-phenylhydrazine or 1, 1-diphenylhydrazine hydrochloride results in the formation of MVI species [MCl4(NNRR)]. These react with tertiary phosphines PR3 to form MV species [MCl3(NNRR)(PR3) n ] (n=1 or 2).[MoCl3(NNMePh)(PMe3)2] can be reduced in the presence of PMe3 to the MoIV speciescis-mer-[MoCl2(NNMePh)(PMe3)3].  相似文献   

4.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

5.
Summary Binuclear PdII and PtII complexes of the type [M2Cl2(-Opy)2(PR3)2] [M = Pd or Pt; Opy = 2-OC5H4N (2-hydroxypyridinate ion); PR3 = PEt3, Pn-Bu3, PMe2Ph or PMePh2] were synthesized and characterized by elemental analysis, 1H- and 31P-n.m.r. spectroscopies. The Pd complexes exist in the sym trans form, whereas the corresponding Pt complexes were generated as different isomers.  相似文献   

6.
Fe2(CO)9 and R2P(S)P(S)R2 (R = Et, n-Pr, n-Bu, Ph) react to form two types of cluster complexes Fe3(CO)93-S)2 (1), Fe2(CO)6(μ-SPR2)2 (2A)–(2D), [2A, R = Et; 2B, R = n-Pr; 2C, R = n-Bu; 2D, R = Ph]. The complexes result from phosphorus–phosphorus bond scission; in the former sulfur abstraction has also occurred. The complexes have been characterized by elemental analyses, FT-IR and 31P-[1H]-NMR spectroscopy and mass spectrometry.  相似文献   

7.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

8.
Abstract

Four different series of N,N-dimethylaminoalkylchalcogenolates, viz. Me2NCH2 CH2E?, Me2NCH(Me)CH2E?, Me2NCH2CH(Me)E?, and Me2NCH2CH2CH2E? (E = S, Se, Te), (referred as EN) have been synthesized and characterized. Their reactions with palladium(II) and platinum(II) precursors have been explored. Complexes of the general formula, [MCl(EN)]n, [MCl(EN)2]n, [MCl(EN)(PR3)], [M2Cl2(μ-EN)2(PR3)2], [M2(μ-EN)2(PP)2]2+, etc. have been isolated. All the complexes have been characterized by elemental analysis, IR, NMR (1H, 13C, 31P, 77Se, 125Te, 195Pt), UV-vis, and FAB mass spectral data. A weak absorption in the electronic spectra of [MCl(EN)(PR3)] has been attributed to metal mediated ligand-to-ligand charge transfer and showed pronounced chalcogen dependence being red shifted on moving from S → Se → Te. Structures of several complexes have been established by X-ray diffraction analyses. Thermal behavior of some of these complexes has been investigated by TGA.  相似文献   

9.
Dodecanuclcar cluster complexes [Mo12S16(PEt3)10] 1 and [Mo12Se16(PEt3)10] 2 have been prepared by the reactions of [Mo6S8(PEt3)6] with sulfur or [Mo6Se8(PEt3)6] with Cp2TiSe5, respectively, in toluene at refluxing temperature. The structures have been determined at 173 K by X-ray crystallography. The compound 1 ·3CHCl3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 14.859(5) Å, b = 15.868(4) Å, c = 14.200(7) Å, α = 100.58(3)°, β = 117.58(3)°, γ = 79.53(2)°, V = 2899(1) Å3, and Z = 1. Full-matrix least-squares refinement using 9016 observed reflections (Io > 2σ(Io)) gave R = 0.056, and Rw = 0.045. The data for 2 ·2CHCl3 are: triclinic, $ {\rm P}\bar 1 $, a = 15.737(4) Å, b = 18.763(9) Å, c = 13.062(4) Å, α = 102.45(3)°, β = 128.54(2)°, γ = 69.49(3)°, V = 2825 Å3, Z = 1, R = 0.096, and Rw = 0.120 for 5922 reflections (Io > 2σ(Io)). The cluster complexes 1 and 2 have two octahedral molybdenum cluster units linked by the rhomboidal intercluster Mo24-E)2 bonding. The intercluster Mo—Mo distances in 1 are 3.419 Å and 2 3.551 Å. The cyclic voltammetry of 1 and 2 shows two oxidation and two reduction steps separated as large as 380–490 mV. The UV-Vis spectra of the dodecanuclear cluster complexes 1 and 2 have an extra weak band at around 744 nm which is absent in the starting octahedral cluster complexes.  相似文献   

10.
The reactions of polynuclear cobalt(ii) trimethylacetates [Co(OH) n (OOCCMe3)2–n ] x , Co6(3-OH)2(OOCCMe3)10(HOOCCMe3)4, or Co4(3-OH)2(OOCCMe3)6(HOEt)6 with an excess of N-phenyl-o-phenylenediamine (1) in toluene followed by treatment with atmospheric oxygen afforded the diamagnetic complex [Co{2-(NPh)(NH)C6H4}2{1-(NH2)C6H4(NPhH)}]+(Me3CCOO...H...OOCCMe3) (3), whose cation contains the CoIII atom. The reaction of Co4(3-OH)2(OOCCMe3)6(HOEt)6 with a deficient amount of diamine 1 in acetonitrile under an argon atmosphere gave rise to the antiferromagnetic ionic complex [Co{2-(NPh)(NH)C6H4}2MeCN]+[Co2(2,2-OOCCMe3)(2-OOCCMe3)2(2-OOCCMe3)2]·2MeCN (4), whose cation is an isoelectronic analog of the cation in complex 3. The structures of the new compounds were established by X-ray diffraction analysis.  相似文献   

11.
A magnetochemical study has been performed on a series of [MII(1,10–C12H8N2)3]2+ (MII = Mn, Ni, Cu) cation salts with [B9C2H12] and [MIII(B9C2H11)2 ] (MIII = Co, Ni) ortho-carboranes(12) in the temperature range of 2 K to 300 K. X-ray diffraction (XRD) and X-ray phase analysis (XRPA) data are given and discussed for these compounds. The complexes contain paramagnetic centers of different origin and aromatic fragments of two types in the structures. The results are represented by the temperature (T) dependences of the inverse molar paramagnetic susceptibility (–1) and effective magnetic moments (ef) and by Curie–Weiss equations. For two salts with Mn(II), ferromagnetic interactions near T=20 K have been detected, which is a new phenomenon in borane chemistry.  相似文献   

12.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

13.
A diselenide, (MeOOCCH2CH2Se)2 (1) has been prepared by esterification of (HOOCCH2CH2Se)2 in methanol. The reductive cleavage of Se-Se bond in 1 by NaBH4 in methanol generates MeOOCCH2CH2SeNa. The latter in different stoichiometries reacts with [M2Cl2(μ-Cl)2(PR3)2] to give a variety of products of compositions [M2Cl2(μ-SeCH2CH2COOMe)2(PR3)2] (2); [M2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PR3)2] (3); [Pd2(SeCH2CH2COOMe)2(μ-SeCH2CH2COOMe)2(PR3)2] (4);[Pd3Cl2(μ-SeCH2CH2COOMe)4(PR3)2] (5). Treatment of complexes 2 with [M2Cl2(μ-Cl)2(PR3)2] affords complexes 3 in nearly quantitative yield. The formation of various products in these reactions is sensitive to stoichiometric ratio of reactants employed. This enables interconversion of various complexes by manipulating mole ratios of appropriate starting materials. A homoleptic palladium complex, [Pd(SeCH2CH2COOMe)2]6 (6) was isolated from a reaction between Na2PdCl4 and MeOOCCH2CH2SeNa. All these complexes have been characterized by elemental analysis, IR, UV-Vis and NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy. Structures of trans-[Pd2Cl2(μ-SeCH2CH2COOMe)2(PPh3)2] (2d), [Pt2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PnPr3)2] (3e), [Pd3Cl2(μ-SeCH2CH2COOMe)4(PnPr3)2] (5) and [Pd(SeCH2CH2COOMe)2]6 (6) have been established unambiguously by X-ray crystallography. In these complexes, there are bridging selenolate ligands with their uncoordinated ester groups. Compound 6 has a centrosymmetric Pd6Se12 hexagon in which every two palladium atoms are bridged by selenolate ligands. Thermal behaviour of some complexes has been investigated. Pyrolysis of compound 2b in tributylphosphate at 195 °C gave Pd17Se15 nanoparticles which were characterized by XRD and EDAX.  相似文献   

14.
Sulfur/oxygen-bridged incomplete cubane-type triphenylphosphine molybdenum and tungsten-clusters [Mo3S4Cl4(H2O)2(PPh3)3]·3THF (1A), [Mo3S4Cl4(H2O)2(PPh3)3]·2THF (2A), [Mo3OS3Cl4(H2O)2(PPh3)3]·2THF (1B), and [W3S4Cl4(H2O)2(PPh3)3]·2THF (1C) were prepared from the corresponding aqua clusters and PPh3 in THF/MeOH. On recrystallization from THF, procedures with and without addition of hexane to the solution gave 1A and 2A, respectively, while the procedures gave no effect on the formation of 1B and 1C. Crystallographic results obtained are as follows: 1A: monoclinic, P21/n, a=17.141(4) Å, b=22.579(5) Å, c=19.069(4) Å, =96.18(2)°, V=7337(3) Å3, Z=4, R(R w)=0.078(0.102); 1C: monoclinic, P2 1/c, a=12.635(1) Å, b=20.216(4) Å, c=27.815(3) Å, =96.16(1)°, V=7062(2) Å3, Z=4, R(R w)=0.071(0.083). If the phenyl groups are ignored, the molecule [Mo3S4Cl4(H2O)2(PPh3)3] in 2A has idealized CS symmetry with the mirror plane perpendicular to the plane determined by the metal atoms, while the molecule in 1A does not have the symmetry. The tungsten compound 1C is isomorphous with the molybdenum compound 2A. 31P NMR spectra of 1A, 2A, and 1C were obtained and compared with similar clusters with dmpe (1,2-bis(dimethylphosphino)ethane) ligands.  相似文献   

15.
The action of trifluoroacetic acid on the series M(CO)6?n(PA3)n (M = Mo, W; A = CH3, OCH3; n = 2, 3, 4) has shown that protonation occurs if n ? 3. For n = 3 the basicity of the ligand PA3 plays a more important role in the stability of [HM(CO)3(PA3)3]+complexes than for n = 4. Infrared and proton NMR give evidence of the stereochemical non-rigidity of the [HM(CO)6?n(PA3)n]+ heptacoordinated cation.  相似文献   

16.
In a new oxidative route, Ag+[Al(ORF)4]? (RF=C(CF3)3) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)n]+ salts (n=2, 3) with the weakly coordinating [Al(ORF)4]? anion in quantitative yield. The In+ salt and the known analogous Ga+[Al(ORF)4]? were used to synthesize a series of homoleptic PR3 phosphane complexes [M(PR3)n]+, that is, the weakly PPh3‐bridged [(Ph3P)3In–(PPh3)–In(PPh3)3]2+ that essentially contains two independent [In(PPh3)3]+ cations or, with increasing bulk of the phosphane, the carbene‐analogous [M(PtBu3)2]+ (M=Ga, In) cations. The MI? P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2‐TZVPP, MP2/def2‐TZVPP, and SCS‐MP2/def2‐TZVPP levels.  相似文献   

17.
Reduction of Cp2NbTe2H (Cp=tBuC5H4) with CH3Li results in a red-violet solution which reacts with Co2(CO)8 to give the neutral cluster {Cp2Nb(CO)}2[Co9Te6(CO)8] (2) and a mixture of salts, from which [Na(THF)6][Co9Te6(CO)8] (4) was obtained by crystallization from THF in very poor yield, probably due to Na impurities in CH3Li. Clusters 2 (123 valence electrons) and 4 (122 valence electrons) possess hexacapped cubic Co@Co8 cores. The structure of 2 was identified by comparison of spectroscopic data with those of parent clusters: Two Cp2Nb(CO) fragments are fixed at two opposite 4-Te bridges of the Co9Te6(CO)8 skeleton. A crystal structure determination of 4 shows this compound to contain discrete ions. Nearly equal diameters of ca. 10.5Å for the [Co9Te6(CO)8] anion and the octahedral [Na(THF)6]+ cation as well as electrostatic interactions between them and attractive C–HO contacts may be responsible for the formation of layers throughout the crystal.  相似文献   

18.
将过渡金属配合物阳离子([M(DETA)2]n+(M=Cu2+,Ni2+,Co3+;DETA=Diethylenetriamine,二乙烯三胺)作为客体插入层状MnPS3层间得到了相应的3个夹层化合物。通过X-射线粉末衍射、元素分析和红外光谱对夹层化合物的结构进行了表征。结果表明,与主体MnPS3 0.65 nm的层间距相比较,夹层化合物(Mn0.88PS3[Cu(DETA)2]0.12)的层间距扩大了0.32 nm,由此推测客体[Cu(DETA)2]2+在层间以平面四方的配位形式存在,而另2个夹层化合物(Mn0.79PS3[Ni(DETA)2]0.21和Mn0.74PS3[Co(DETA)2]0.17)的层间距扩大了0.48 nm,说明客体[(M(DETA)2]n+,M=Co3+,Ni2+) 在主体层间以八面体配位形式存在。磁性测试结果表明过渡金属离子[(M(DETA)2]n+(M=Cu2+,Co3+)的插入能引起主体MnPS3的磁性在35~40 K发生由顺磁向亚铁磁性的转变并表现自发磁化,而客体[Ni(DETA)2]2+却使夹层化合物的反铁磁相互作用增强,抑制了自发磁化的发生。  相似文献   

19.
Hydrated and anhydrous trinuclear metal(III) trifluoroacetates of Cr and Fe were prepared by reaction of freshly precipitated metal oxides with trifluoroacetic acid, while manganese analogs by acid exchange. IR data show the presence of bidentate trifluoroacetate groups. The diffuse reflectance spectra suggest octahedral environment around metals.Mössbauer spectra show that iron atoms in the compounds are high spin hexacoordinated; two types of iron sites are suggested in hydrated iron compound. Low magnetic moment of chromium and iron compounds indicate antiferromagnetic coupling. Th anhydrous compounds decompose in single step with the evolution of (CF3CO)2O.M 3O(O2CCF3)7 form complexes [M 3O(O2CCF3)6·3Py]+ [O2CCF3] with pyridine.
Dreikernige Metall(III)-Trifluoracetate
Zusammenfassung Es wurden hydratisierte und wasserfreie dreikernige Metall(III)-Trifluoracetate von Cr und Fe mittels der Reaktion von frisch gefälltem Metalloxid und Trifluoressigsäure dargestellt; die Mangan-Analogen wurden über Säure-Austausch gewonnen. Die IR-Daten zeigen die Präsenz von zweizähnigen Trifluoracetat-Gruppen an. Die diffuse-reflectance-Spektren sprechen für eine octahedrale Umgebung rund um das Metall. DieMössbauer-Spektren zeigen, daß die Eisenatome in den entsprechenden Verbindungen high-spin hexakoordiniert sind; dabei werden in den hydratisierten Eisenverbindungen zwei Typen von Eisenatomen gezeigt. Ein niederes magnetisches Moment der Chrom- und Eisen-Verbindungen zeigen eine antiferromagnetische Kopplung an. Die wasserfreien Verbindungen zersetzen sich in einem einzigen Schritt unter Entwicklung von (CF3CO)2O. Mit Pyridin bilden die VerbindungenM 3O(O2CCF3)7 die Komplexe [M 3O(O2CCF3)6·3Py]+ [O2CCF3].
  相似文献   

20.
Crystals of the {[Sr4(H2O)12(NO3)4](C36H36N24O12)}(NO3)4·3H2O and {[Sr2(H2O)12][Sr(H2O)3(NO3)2]2(C48H48N32O16)}(NO3)4·8H2O were prepared by slow concentration of aqueous solutions containing strontium nitrate and macrocyclic cavitands, viz., cucurbit[6]uril and cucurbit[8]uril ([C6H6N4O2] n , n = 6 and 8), respectively. According to the results of X-ray diffraction analysis, the crystal structures of these supramolecular compounds are built from polymeric chains, which consist of the alternating cucurbit[n]uril molecules and Sr2+ cations linked through the bridging aqua ligands and nitrate anions. The supramolecular compound of cucurbit[8]uril provides the first example of compounds in which this macrocycle is bound to metal aqua complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号