首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈建琴  黄建辉 《催化学报》2011,(10):1624-1630
以十六烷基三甲基溴化铵、醋酸镉和二氧化锗为前驱物,在优化的水热条件下制备了Cd2Ge2O6纳米棒.采用X射线粉末衍射、扫描电镜、透射电镜和紫外-可见漫反射光谱等手段对样品进行了表征,并以甲基橙和水杨酸为模拟污染物,考察了催化剂的液相光催化性能.结果表明,在弱碱性水热条件下可制得Cd2Ge2O6纳米棒,其液相光催化活性高...  相似文献   

2.
Nb(2)O(5) nanorods and nanospheres were synthesized, and their photocatalytic activity for methylene blue decomposition in water compared. Nb(2)O(5) nanorods clearly displayed higher activity, despite their comparable surface area. With a shape-dependent surface acidity, hydrothermal stability, and high photoactivity, these Nb(2)O(5) nanorods are a unique and exciting nanomaterial for non-classical photocatalytic mineralization of organic compounds in water.  相似文献   

3.
Co掺杂ZnO纳米棒的水热法制备及其光致发光性能   总被引:7,自引:0,他引:7  
以Zn(NO3)2·6H2O 和Co(NO3)2·6H2O为原料, 通过水热法在较低温度下制备了纯ZnO和Co掺杂的ZnO(ZnO:Co)纳米棒. 利用XRD、EDS、TEM和HRTEM对样品进行了表征, 结合光致发光(PL)谱研究了样品的PL性能. 结果表明, 水热法制备纯ZnO和ZnO:Co纳米棒均具有较好的结晶度. Co2+是以替代的形式进入ZnO晶格, 掺入量为2%(原子分数)左右. 纯的ZnO纳米棒平均直径约为20 nm, 平均长度约为180 nm; 掺杂样品的平均直径值约为15 nm, 平均长度约为200 nm左右; Co掺杂轻微地影响ZnO纳米棒的生长. 另外, Co掺杂能够调整ZnO纳米棒的能带结构、提高表面态含量, 进而使得ZnO:Co纳米棒的紫外发光峰位红移, 可见光发光能力增强.  相似文献   

4.
以分析纯ZnO作为锌源、NaOH为矿化剂、盐酸为反应溶液pH调节剂,利用水热反应制备了花状ZnO纳米棒;采用扫描电子显微镜和X射线衍射仪分析了产物的形貌和结构,考察了水热温度以及Zn2+和OH-浓度比对产物形貌的影响;以甲基橙为目标降解物,采用紫外-可见分光光度计研究了ZnO纳米棒的光催化性能.结果表明,在水热反应温度80℃、Zn2+/OH-浓度比1∶7.5条件下所得ZnO纳米棒呈花状聚合,直径约为200nm,长度约为2μm,具有六方纤锌矿结构.当甲基橙初始浓度为30 mg.L-1、ZnO纳米棒的投放量为1.5g.L-1时,以300W紫外灯照射150min,甲基橙的降解率可达90%.  相似文献   

5.
The formation process of titania based nanorods during hydrothermal synthesis starting from an amorphous TiO2.nH2O gel has been investigated. Sodium tri-titanate (Na2Ti3O7) particles with a rodlike morphology were prepared by a simple hydrothermal process in the presence of a concentrated NaOH aqueous solution. The ion exchange reaction of the synthesized Na2Ti3O7 nanorods with HCl under ultrasonic treatment promotes a complete sodium substitution and the formation of H2Ti3O7 nanorods. Low-temperature annealing of the as-produced nanorods of Na2Ti3O7 and H2Ti3O7 leads to a loss of the layered crystal structure and the formation of nanorods of condensed framework phases-sodium hexa-titanate (Na2Ti6O13) and metastable TiO2-B phases, respectively. These transformations proceed without a significant change in particle morphology. The nanostructures were investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), and Raman spectroscopy. The structural defects of the synthesized nanorods were investigated by high-resolution electron microscopy. The presence of planar defects can be attributed to the exfoliation of the zigzag ribbon layers into two-dimensional titanates as well as to the condensation of the layers of TiO6 octahedra into three-dimensional frameworks.  相似文献   

6.
Mg-Al spinel (MgAl2O4) nanorods and nanoplatelets transformed from Mg-Al layered double hydroxide (Mg-Al-LDHs) were synthesized via a combined hydrothermal method and calcination route using Al(NO3).9H2O and Mg(NO3)2.6H2O as raw materials. The nanorods and nanoplatelets were characterized by means of physical techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), selected-area electron diffraction (SAED), Fourier transform infrared spectra (FT-IR), thermogravimetric (TG), and nitrogen adsorption-desorption isotherms. XRD patterns reveal that the Mg-Al-LDHs nanostructures were obtained under a hydrothermal reaction temperature of 200 degrees C and Mg-Al spinel nanostructures were fabricated via calcination of the Mg-Al-LDHs nanostructures at 750 degrees C. It can be seen from TEM that the sizes of the Mg-Al-LDHs nanoplatelets were about 20-40 nm and the diameters of the MgAl2O4 nanorods were ca. 6 nm. The HRTEM images indicate that the crystal lattice spaces of the MgAl2O4 nanorods and nanoplatelets are 0.282 and 0.287 nm, respectively.  相似文献   

7.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质.  相似文献   

8.
Single crystalline Zn(2)SnO(4) (ZTO) nanorods 2-4 nm in diameter and around 20 nm in length were successfully synthesized by a simple hydrothermal process with use of hydrazine hydrate as an alkaline mineralizer instead of NaOH or NH(3).H(2)O. By analyzing the UV-vis diffuse reflectance spectrum, the optical band gap (E(g)) of the nanorods was found to be 3.87 eV, which indicates a blue shift of 0.27 eV from that of bulk ZTO (3.6 eV). In situ high-temperature X-ray diffraction was employed to study the thermal expansion coefficient and the variation of lattice parameter with temperature of the product. Furthermore, we discussed the chemical mechanism and key factors to the hydrothermal formation of the sub-5 nm ZTO nanorods.  相似文献   

9.
Branched MnOOH nanorods with diameters in the range of 50-150 nm and lengths of up to tens of micrometers were prepared by using potassium permanganate (KMnO(4)) and PEG 400 (PEG=polyethylene glycol) as starting materials through a simple hydrothermal process at 160 °C. After annealing at 300 °C under a N(2) atmosphere for 5 h, MnOOH nanorods became gradually dehydrated and transformed into mesoporous Mn(3)O(4) nanorods with a slight size-shrinking. The as-obtained mesoporous Mn(3)O(4) nanorods had an average surface area of 32.88 m(2) g(-1) and a mean pore size of 3.7 nm. Through tuning the experimental parameters, such as the annealing atmosphere and temperature, β-MnO(2), Mn(2)O(3), Mn(3)O(4), MnO, and Mn(5)O(8) were selectively produced. Among these structures, mesoporous Mn(3)O(4) nanorods were efficient for the catalytic degradation of methylene blue (MB) in the presence of H(2)O(2) at 80 °C.  相似文献   

10.
过氧化氢作为一种对环境友好的、重要的化学原料,被广泛用于化学工业、漂白剂和废水处理等领域.近几十年来,过氧化氢主要通过蒽醌工艺生产.然而,该方法需要多步蒽醌加氢和氧化反应,导致较高的生产成本和能量消耗,同时伴随着大量的二氧化碳排放.另一种替代策略是在贵金属催化剂的辅助下,由氢气和氧气的混合气体在高温下直接合成.但是,氢气和氧气的混合气体在高温下存在爆炸的危险,从而限制了其大规模应用.因此,探索一种低能耗、温和条件下生产过氧化氢具有重要的意义.太阳能驱动光催化生产过氧化氢是解决上述问题的理想途径.通常认为,过氧化氢是由直接双电子还原(E(O2/H2O2)=0.68 V vs.NHE)或间接单电子O2还原(E(O2/?O2?)=-0.33 V vs.NHE)产生的.氧化锌半导体具有很的稳定性好、环保和成本低等优点,因此经常被用于二氧化碳的光催化还原、污水处理和气体传感器等领域.氧化锌的导带电势(ECB=-0.5 V vs.NHE)比氧还原电势更负,意味着它在热力学上满足光催化过氧化氢生产的要求.然而,目前关于氧化锌的光催化生产过氧化氢的研究尚未受到较多的关注.本文采用简单的水热法制备了一维氧化锌纳米棒,在不同温度下热处理后,对其形貌和结构、光学性质和电化学性质进行了表征.同时,系统地研究了以乙醇为牺牲剂光催化生产过氧化氢的性能.结果表明,随着焙烧温度的升高,氧化锌纳米棒内部的氧空位被空气中的氧气重新填充,其催化生成过氧化氢的活性先升高后降低.经300oC焙烧的氧化锌光催化产过氧化氢的活性最好,为285μmol L-1 h-1.同时,对过氧化氢的生成机理研究结果表明,该过程中为间接单电子O2还原过程.氧气先与一个电子反应生成超氧自由基,再与两个质子和一个电子反应生成过氧化氢分子.综上,本文为氧化锌纳米棒光催化产过氧化氢的机理研究提供了新认识,并提出了一种有前途的过氧化氢生产策略.  相似文献   

11.
A facile hydrothermal method was developed to synthesize boehmite nanorods with a length of 50-2000 nm, a diameter of 6-20 nm, and a preferential growth along [100] by treating the Al(OH)(3) gel in acidified sulfate solutions at 240 degrees C. Studies on the hydrothermal treatment of Al(OH)(3) gel in sulfate solutions showed that the morphology and the composition of the hydrothermal products were connected with the sulfate concentration and the pH of the hydrothermal solution. The aspect ratio of the boehmite nanorods increased to 300 as the initial H(2)SO(4) concentration increased to 0.043 mol x L(-1), whereas boehmite nanorods and (H(3)O)Al(3)(SO(4))(2)(OH)(6) cubic particles coexisted in the case of the initial H(2)SO(4) concentration > or = 0.054 mol x L (-1). Sole boehmite nanoflakes with a diameter of about 50 nm were formed under alkaline conditions (pH 10.5) despite the existence of the sulfate. The chemical and Raman analyses indicated that SO(4)(2-) in acidified solutions adsorbed on the boehmite surface via H-bonds. On the basis of the above results, the growth of boehmite along the [100] direction was attributed to the selective adsorption of SO(4) (2-) on the (010) and (001) planes of boehmite.  相似文献   

12.
Tang B  Wang G  Zhuo L  Ge J  Cui L 《Inorganic chemistry》2006,45(13):5196-5200
alpha-FeOOH nanorods with diameters of 15-25 nm and lengths up to 170-300 nm were synthesized in high yield via a facile and template-free hydrothermal method at low temperature. After calcining the as-synthesized alpha-FeOOH at 250 degrees C for 2 h, we could obtain alpha-Fe2O3 nanorods. Interestingly, the as-obtained alpha-Fe2O3 nanorods exhibited weakly ferromagnetic characteristics at low temperature and superparamagnetic property at room temperature, which is different from the behavior of the corresponding bulk material.  相似文献   

13.
在NaOH溶液中水热合成了CdS纳米棒, 并探讨了NaOH溶液浓度和反应时间对CdS纳米棒形貌及晶体结构的影响及其可能的生长机理和母液循环可行性. 用粉末X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 高分辨透射电子显微镜(HRTEM)和选区电子衍射(SAED)对CdS纳米棒进行了表征, 并考察了其在可见光照射下光催化降解亚甲基蓝的活性. 结果表明, NaOH溶液是形成棒状形貌的关键因素. 在最优实验条件下, 可获得六方纤锌矿结构CdS纳米棒, 直径约200 nm, 长度可达4 μm. 该纳米棒具有良好的可见光光催化活性.  相似文献   

14.
Hu JQ  Deng B  Zhang WX  Tang KB  Qian YT 《Inorganic chemistry》2001,40(13):3130-3133
The ternary semiconductor CdIn(2)S(4) nanorods were synthesized by a method based on CdS nanorods via the hydrothermal route, in which CdS nanorods were converted by reaction with InCl(3) and thiourea in aqueous solution. Transmission electron microscopy (TEM) images revealed that the typical sizes of the CdIn(2)S(4) nanorods were 10-30 nm in diameter and 200-1000 nm in length. X-ray photoelectron spectra (XPS) analysis of the surface stoichiometry (CdIn(2.03)S(4.15)) and room-temperature Raman spectrum (RS) were recorded. The influences of reaction temperature, time, and sulfur sources on the formation for CdIn(2)S(4) nanorods were investigated. A possible formation mechanism of the CdIn(2)S(4) nanorods was also proposed.  相似文献   

15.
Cubic Ia3Tm-Lu(2)O(3) porous nanorods of ~45 μm length and 90 nm diameter have been prepared with precise compositions through a soft hydrothermal route (i.e., autogenic pressure, neutral pH, and 185 °C for 24 h) by using chloride reagents. For these nanorods, room temperature excitation and photoluminescence spectra of Tm(3+) multiplets related to the eye-safe (3)F(4)→(3)H(6) laser transition at ~1.85-2.05 μm are similar to those of bulk crystals. Room-temperature luminescence decays of (3)H(4) and (3)F(4) exhibit nonexponential dynamics analytically reproduced by the sum of two exponential regimes, which are ascribed to the different rates of nonradiative relaxations in defects at the surface and in the body of the nanocrystals, respectively. Measured fluorescence lifetimes τ ~ 200-260 μs and τ ~ 2.3-2.9 ms for (3)H(4) and (3)F(4), respectively, in 0.2% mol Tm-Lu(2)O(3) nanorods, are considerably larger than in previous nanocrystalline Tm-doped sesquioxides, and they are close to values of bulk sesquioxide crystals with equivalent Tm(3+) content.  相似文献   

16.
The hydrolysis of H(2)TaF(7) when it slowly forms via etching Ta powders with HF and H(2)O(2) under hydrothermal conditions produces hierarchical nanostructures of fluorinated and naked Ta(2)O(5) single-crystalline nanorods, which exhibit a far greater photocatalytic activity for H(2) production than commercial Ta(2)O(5) particles.  相似文献   

17.
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h-1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.  相似文献   

18.
TiO2 rutile nanorods of average length L = 160 +/- 40 nm and average diameter D = 15 +/- 5 nm have been synthesized through a seed-mediated growth process by TiCl4 hydrolysis in concentrated acidic solution. These nanorods were dispersed in water to yield stable (aggregation-free) colloidal aqueous suspensions. At volume fractions phi > 3%, the suspensions spontaneously display a phase separation into an isotropic liquid phase and a liquid-crystalline phase identified as nematic by X-ray scattering. At phi > 12%, the suspensions form a nematic single phase, with large order parameter, S = 0.75 +/- 0.05. Very well aligned rutile films on glass substrate were produced by spin-coating, and their photocatalytic properties were examined by monitoring the decomposition of methylene blue under UV light. We found that UV-light polarized along the quadratic axis of the rutile nanorods was most efficient for this photocatalytic reaction.  相似文献   

19.
Boron and nitrogen codoped TiO2 nanorods (BNTRs) were synthesized via two-step hydrothermal reactions using TiN as a starting material. The as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscope (SEM), transmission electron microscopy and X-ray photoelectron spectroscopy techniques. The results showed that TiO2 nanorods with the diameter of approximately 50–100 nm and the length of several micrometers were doped by the interstitial N and B. The nanorods were firstly formed in the hydrothermal synthesis of nitrogen doped TiO2. The growing process of nanorods was observed by SEM and a most probable formation mechanism of the trititanate nanorods was proposed. The BNTRs showed a higher photocatalytic activity and a bigger photocurrent response than N–TiO2 nanorods under visible light irradiation.  相似文献   

20.
钽酸盐光催化材料往往具有较高的光催化活性.近年报道的钽酸盐光催化剂主要采用传统高温固相法制备,该方法不可避免地导致高温烧结,使合成的钽酸盐颗粒较大,比表面积较小,而且该方法具有不可克服的晶体转变、结晶度差、分解、挥发和纯度低等缺点,使制备的光催化剂活性较低.而纳米材料由于粒径小,提高了电子和空穴的扩散速度,大大降低了电子和空穴在材料内的复合几率,从而使光催化材料活性大幅提高.此外,粒径减小也使表面原子迅速增多,减小了光的漫反射,同时也使光吸收不易达到饱和,有利于提高光吸收效率.因此,制备纳米材料是提高半导体光催化剂活性的有效手段.目前,采用湿化学的溶液合成方法能在较低温度下获得粒度小且均匀、计量比准确的光催化剂粉末,但是合成钽酸盐光催化剂的水溶性钽前体即乙醇钽(或氯化钽)价格昂贵,而且对潮湿极端敏感易水解,使产物纯度降低,不适合工业化生产.近年来,尽管有文献报道以Ta2O5为原料利用水热、溶胶-凝胶和共沉淀等方法制备钽酸盐,但其合成条件苛刻,合成步骤复杂,合成周期较长,耗能大,产物产量较低且不均匀,很难实现产物的形貌控制来筛选出适合光催化反应的材料.目前关于纳米钽酸盐光催化材料形貌控制方面的研究鲜有报道,主要是由于Ta2O5极难溶解,很难实现液相合成.因此,纳米钽酸盐光催化材料的可控制备是研究的难点.我们发展了熔盐-水热制备钽酸盐新方法,实现了K1.9Na0.1Ta2O6·2H2O的可控制备.利用熔盐法制备一种可溶性钽酸盐前驱体,再通过水热法在液相进一步反应制得纳米钽酸盐光催化材料K1.9Na0.1Ta2O6·2H2O,通过控制反应条件实现了纳米钽酸盐K1.9Na0.1Ta2O6·2H2O的形貌调控,得到了纳米球、微球、去顶八面体形貌和类似榴莲形貌等不同形貌,而利用其它制备方法很难控制钽酸盐的形貌.另外,研究了制备材料吸附和光催化降解罗丹明B的性能,发现该材料光催化活性与形貌直接相关.表征结果表明,制备样品的X射线衍射(XRD)谱图尖锐,结晶较好,其各衍射峰位置均与K2Ta2O6一致,为纯相烧绿石结构,属于立方晶系,空间群为Fd3m.通过分析合成材料的元素组成及含量,确定K:Na:Ta比例近似为1.9:0.1:2.为了进一步研究属于烧绿石型化合物K1.9Na0.1Ta2O6·2H2O的结构,对不同形貌材料进行了红外光谱测试,所有样品在450–1000 cm–1的谱峰可归属于(K, Na)–O和Ta–O键的振动,3300 cm–1左右为晶体结构中水的羟基伸缩振动峰,1720 cm–1左右是晶体结构中水的弯曲振动峰.可以看出,不同形貌材料的红外谱图吸收带宽度和位置十分相似,只存在小的偏移和变化,进一步表明不同形貌的材料具有相似的晶体结构,与XRD结果一致.差热-热重分析确定了结构中所含结晶水数量近似为2.光催化性能测试结果表明,具有纳米球形貌的材料比表面积较大,因而光催化活性最高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号