首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triphenylamine-based new chemosensors 1 and 2 have been designed and synthesized for fluorometric detection of anions. The urea-amide conjugates in 1 and 2 are involved in binding of anions via hydrogen bonding. UV?Cvis and fluorescence titration experiments revealed that the sensor 1 has the selectivity for acetate (AcO?), dihydrogenphosphate (H2PO4 ?) and fluoride (F?) over the other anions examined in the present study, in CHCl3. In comparison, receptor 2 is non responsive for the same anions under similar conditions. In more polar solvent CH3CN containing 0.1% DMSO, the receptor 1 shows a greater selectivity towards fluoride. The color of the solution of 1 is changed from colorless to light yellow and finally to yellowish brown only in the presence of fluoride in CH3CN containing 10% DMSO. In pure DMSO and CH3CN solvents, almost colorless solution of 1 is transformed into blood red and reddish brown in the presence of 30 equivalent amounts of F?, respectively.  相似文献   

2.
A novel vitamin B6 cofactor derived anion sensor L for the selective colorimetric detection of acetate has been developed by the condensation of pyridoxal and 2-aminothiophenol. The sensor L showed a noteworthy change in the visible region of the spectrum and was detected by the ‘naked-eye’ for both acetate and fluoride anions in DMSO but selectively for acetate in DMSO/H2O (88:12, v/v). The anion recognition ability of L was investigated by spectroscopic (UV–vis and 1H NMR) and DFT methods.  相似文献   

3.
A novel highly sensitive colorimetric receptor 1 for acetate based on N-(4-oxa-3-one-phenanthrene-2-carbonyl)-p-nitrophenylhydrazine was designed, synthesized and characterized. Experiments showed that the receptor 1 can selectively recognize acetate in DMSO solution and aqueous solution. The ability of recognition and the bond between receptor 1 and anions were determined using visual inspection, UV?CVis analyses and 1H NMR experiments. In particular, the UV?CVis analyses showed the whole process included two stages: in the first step, the hydrazine form of 1 interacted with acetate through hydrogen bonding with an obvious color change from yellow to purple upon addition of a small amount of AcO?. In the second step, as increasing the addition of AcO?, the color changed from purple to deep yellow, which displayed the deprotonation of the receptor 1.  相似文献   

4.
The synthesis, characterisation and binding and deprotonation studies with anions for four 5-(1H-indol-3-yl)-pyrazolyl derivatives (25) have been described. It is worthy to mention that sensor 2 shows a drastic change in absorption spectrum (ca. 335 nm) and colour (colourless to blue) upon addition of F? in DMSO solution due to the deprotonation of indole –NH proton, as confirmed by 1H NMR titration. Sensor 4 recognizes F? and CN? ions by deprotonation mechanism with visible colour change of the solution in a similar manner to that of 2. However, in contrary to 2 and 4, sensor 3 binds with F?, CN?, H2PO4 ?, AcO? and PhCOO? ions exploiting hydrogen-bonding interaction with the shifting of absorption band to longer wavelength and subsequent colour change of the solution. Compound 5 recognizes F? without any visual colour change and its binding is studied by 1H NMR titration to acquire the important information about the nature of binding between F? and 5.  相似文献   

5.
The reactions between oxophilic group 4 metal chlorides, ??-keto ylides in THF, led to the formation of titanium, zirconium and hafnium edge-shared [M2Cl10]2? complexes (1a?C3f). We describe that the reaction between MCl4 (M = Ti, Zr and Hf) with phosphorus ylides produce edge-shared [M2X10]2? complexes instead of O-coordination previously reported complexes. Adding dimethyl sulfoxide (DMSO) to these complexes in room temperature crystalline solid [M(DMSO)8] · 4Cl · mH2O · DMSO] (M = Ti (1g), Zr (2g) and Hf (3g); m = 0?C3) together with phosphonium salts in mother liquid were formed. The compounds were characterized by elemental analysis, IR and 1H, 13C and 31P NMR spectroscopy.  相似文献   

6.
[Ph3PhCH2P]+[PdCl3(DMSO)]? · DMSO (I), [Ph4P]+[PdCl3(DMSO)]? (II), and [Ph4Sb(DMSO)]+[PdCl3(DMSO)]? (III) complexes have been synthesized via the reaction of palladium chloride with equimolar amounts of triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, and tetraphenylstibonium chloride, respectively. According to X-ray diffraction data, the cations of complexes I (CPC = 104.90(8)°–111.61(9)°) and II (CPC = 105.12(10)°–111.46(10)°) have slightly distorted tetrahedral structures with P-C bond lengths of 1.786(2)–1.809(2) and 1.791(2)–1.799(2) Å, respectively. The antimony atom in the [Ph4Sb(DMSO)]+ cation has a trigonal bipyramidal surrounding with the dimethyl sulfoxide (DMSO) oxygen atom in an axial position (Sb...O 2.567(2) Å). The palladium atoms in the square mononuclear anions of complexes I, II, and III are tetracoordinate, and Pd-Cl distances are 2.3101(5)–2.3104(5) Å, 2.2950(7)–2.2038(7) Å, and 2.2986(9)–2.3073(9) Å, respectively. The DMSO ligands are coordinated to the palladium atom through the sulfur atom (Pd-S, 2.2318(5) (I), 2.2383(6) (II), and 2.2410(9) Å (III)).  相似文献   

7.
The binuclear copper(II) complex [Cu2L(CH3COO)] (I), where L3? is the azomethine trianion based on 3-methyl-4-formyl-1-phenylpyrazol-5-one and 1,3-diaminopropan-2-ol, and its DMSO adduct (II) in which the DMSO molecule acts as an additional bridging ligand are synthesized. The structure of complex II is determined by X-ray diffraction analysis, and the structure parameters of the coordination unit of complex I are determined by EXAFS spectroscopy. The μ2-coordination of the DMSO molecule in compound II results in a change in the sign of the exchange interaction parameter. In complex I, the antiferromagnetic exchange interaction (2J = ?169 cm?1) occurs between the copper(II) ions. The exchange interaction of the ferromagnetic type (2J = 174 cm?1) is observed in complex II. The quantum-chemical calculations of the magnetic exchange parameters by the density functional theory method show that the role of the DMSO molecule as a switch of the exchange interaction character is exclusively the stabilization of the “broken” conformation of the metallocycles.  相似文献   

8.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

9.
Novel 2,3-bis(1H-pyrrol-2-yl)quinoxaline-functionalized hydrazones were prepared and characterized as new chemosensors for copper(II) ion. The binding properties of the compounds 4, 5, 6 and 7 for cations were examined by UV–vis, fluorescence spectroscopy, and linear sweep voltammetric experiments (LSV). The results indicate that a 1:1 stoichiometric complex is formed between compound 4 (or 5, 6, 7) and copper(II) ion, and the association constant is 1.3?×?105 M?1 for 4, 2.1?×?106 M?1 for 5, 4.1?×?105 M?1 for 6 and 8.0?×?105 M?1 for 7, respectively. The recognition mechanism between compound 4 (or 5, 6, 7) and metal ion was discussed based on their electrochemical properties, absorbance changes, and the fluorescence quenching effect when they interact with each other. Control experiments revealed that compound 4 (or 5, 6, 7) has a highly selective response to copper (II) ion.  相似文献   

10.
To realize highly selective relay recognition of Fe3+ and H2PO4- ions, a simple benzimidazole-based fluorescent chemosensor(L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe3+ in H2O/DMSO(1:1, v/v) solutions. The in situ-generated L-Fe3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe3+ displacement approach. The detection limits of sensor L to Fe3+ and L-Fe3+complex to H2PO4- anion were estimated to be 1.0 × 10-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate anions with Fe3+, and H2PO4-, in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe3+ and H2PO4- anion detection in aqueous media.  相似文献   

11.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

12.
The synthesis of the new potentially pentadentate ligand, 2,2??-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(sulfanediyl)diethanamine (L 1 ), containing two thioether sulfurs, two ?CNH2 amines and a pyridyl nitrogen heteroatom is described. Reaction of L 1 with copper(II) chloride and addition of hexafluorophosphate anion has led to isolation of the mixed anion complex Cu2(L 1 )2Cl(PF6)3. The synthesis and X-ray structure of cobalt(III) species, [Co(L 1 )Cl](PF6)2, is also reported. In situ reaction of L 1 with copper(II) as a metal template in the presence of formaldehyde and the carbon acid nitroethane together with triethylamine (as base) led to macrocycle ring closure to yield [Cu(L 2 )Cl]PF6 (where L 2  = 6,13-dimethyl-6-nitro-13-(pyridin-2-yl)-1,11-dithia-4,8-diazacyclotetradecane) whose X-ray structure shows that the copper centre has a distorted square pyramidal coordination geometry being bound by both ?CNH2 nitrogens and both sulfurs of L 2 while the pyridyl nitrogen remains uncoordinated.  相似文献   

13.
[Fe(Me-phen)Cl4][Me-phen·H] (1) and [Fe(Cl-phen)Cl4][Cl-phen·H] (2) complexes were prepared from the reactions of FeCl3·6H2O with 5-methyl-1,10-phenanthroline (Me-phen) and 5-chloro-1,10-phenanthroline (Cl-phen), respectively, in a 0.1 M aqueous solution of HCl. Stepwise addition of dimethyl sulfoxide to the solution of 1 in methanol results in a mixed ligand complex, [Fe(Me-phen)Cl3(DMSO)] (3). Complex 3 was also prepared by two other methods. The reaction of a methanol solution of [Fe(Me-phen)Cl4][Me-phen·H] (1) with [Fe(DMSO)4Cl2][FeCl4] in 1:6 ratio led to 3. Complex 3 was also prepared from the reaction of 5-methyl-1,10-phenanthroline with [Fe(DMSO)4Cl2][FeCl4] in 1:1 ratio in methanol. The three complexes were characterized by IR, UV–Vis, 1H NMR and luminescence spectroscopy and their structures were studied by the single-crystal diffraction method. Calculation methods were employed to study the isomerization of (3) in solution.  相似文献   

14.
The enantioselective interactions between chiral tetra-amidic receptors and nucleosides have been investigated by the ESI-IT-MS and ESI-FT-ICR-MS methodologies. Configurational effects on the CID fragmentation of diastereomeric [M H 2 ?H?A]?+ aggregates (A?=?2'-deoxycytidine dC, citarabine (ara-C) were found to be mostly offset by isotope effect in [S X 2 ?H?A]?+ (X?=?H, D) differently from the results obtained on the analogues (A?=?cytidine C and gemcitabine G). This result points the involvement of two different nucleoside/tetraamide isoforms. The structural differences of the [M H 2 ?H?A]?+ (A?=?C and G) complexes vs. the [M H 2 ?H?A]?+ (dC and ara-C) ones is fully confirmed by the kinetics of their uptake of the 2-aminobutane enantiomers, measured by FT-ICR mass spectrometry. Indeed, uptake of the 2-aminobutane enantiomers by [M H n ?H?A]?+ (n?=?1,2; A?=?dC and ara-C) complexes is reversible, while that by [M H n ?H?A]?+ (n?=?1,2; A?=?C and G) is not. The most encouraging result concerning the measured fragmentation and kinetic differences between C and ara-C, that are just epimers, indicates the possibility to subtly modulate the non-covalent drug/receptor interactions, through the electronic properties of the 2'-substituent on the nucleoside furanose ring, and furthermore on its three-dimensional position.  相似文献   

15.
Three anion receptors based on urea: 1 N, N??-bis-(p-nitrophenylaminocarbonyl)-Hydrazine, 2 N, N??-bis-(p-nitrophenylaminocar-bonyl)-ethylenediamine and 3 N, N??-bis-(p-nitrophenylaminocarbonyl)-1, 3-propane-diamine are designed and synthesized. Studies of UV?Cvis spectra presented that 1 was an excellent sensor of F? and 2 was sensitive to H2PO4 ?. Unfortunately, 3 can not distinguish the anions investigated in this paper. The color changes of the hosts upon the addition of a variety of structurally different anions were also utilized as naked-eye detection which is very convenient. It also revealed significantly that the distance between two recognition sites of receptor had an immediate effect on the selectivity of receptor for anions, which had been confirmed by the 1H NMR titration and IR.  相似文献   

16.
Energetic, geometric and magnetic criteria were applied to examine the stability and/or aromatic character for the cyclic molecules C 4 H 4 M (M = O, S, Se, Te, NH, PH, AsH and SbH) at B3LYP/6-311++G** and MP2/6-311++G** levels of theory. The isodesmic reactions and nuclear independent chemical shifts (NICS) calculations were utilized to examine the molecules for energetic and magnetic criteria, respectively. The isodesmic reaction energies reveal that thiophene (C 4 H 4 S, ?23.269 kcal/mol) and pyrrole (C 4 H 4 NH, ?20.804 kcal/mol) have the greatest aromatic stabilization energies and tellurophene (C 4 H 4 Te, ?15.114 kcal/mol) and stibole (C 4 H 4 SbH, ?1.169 kcal/mol) have the lowest aromatic stabilization energies in their corresponding groups at MP2/6-311++G**. The NICS calculations confirmed the results obtained through isodesmic reaction energies.  相似文献   

17.
Bromo dimethyl sulfoxide osmium(II) complexes were synthesized: trans-[OsBr2(dmso-S)4] (1) was obtained by the reaction of K2[OsBr6] with DMSO in the presence of SnBr2 at 100°C and cis,fac-[OsBr2(dmso-S)3(dmso-O)] (2) was prepared by thermal isomerization of 1 in a DMSO solution at 150°C. The coordination mode of DMSO molecules was determined by IR and 1H and 13C NMR spectroscopy. X-ray diffraction analysis showed that compound 2 crystallizes in the monoclinic system, space group P21/n; a = 8.4711(5) Å, b = 27.7876(15) Å, c = 8.5569(5) Å, β = 115.7110(10)°; Z = 4. The coordination polyhedron of osmium is a distorted octahedron; the osmium environment is formed by two cis-arranged bromine atoms and three fac-S-coordinated and one O-coordinated DMSO molecules. The interconversion of complexes in solutions was studied by UV/Vis and 1H and 13C NMR spectroscopy. In chloroform and DMSO, complex 2 isomerizes to cis-[OsBr2(dmso-S)4] and (in the light) to 1. The complexes trans-[OsX2(dmso-d6)4], where X = Cl, Br, were isolated from DMSO-d 6 and characterized by the IR spectra.  相似文献   

18.
Quantum mechanical and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations are carried out to study the thermal unimolecular decomposition of oxetane (1), 2-methyloxetane (2), and 2,2-dimethyloxetane (3) at the MPW1PW91/6-311 + G** level of theory. The results of the calculations reveal that decomposition reaction of compounds 1?C3 yields formaldehyde and the corresponding substituted olefin. The predicted high-pressure-limit rate constants for the decomposition compounds 1?C3 are represented as 6.61 × 1013exp(?32472/T), 9.33 × 1013exp(?29873/T), and 4.79 × 1013exp(?27055/T) s?1, respectively. The fall-off pressures for the decomposition of compounds 1?C3 are found to be 9.42 × 10?2, 3.67 × 10?3, and 7.26 × 10?4 mm Hg, respectively. As the fall-off pressure of the decomposition process of compounds 1?C3 are in the following order: P 1/2(1) > P 1/2(2) > P 1/2(3); therefore the decomposition rates are as follow: rate(1) < rate(2) < (3).  相似文献   

19.
In this study, a new phthalonitrile derivative 3 bearing 1,3-bis[3(dimethylamino)phenoxy]propan-2-ol 1, metal-free phthalocyanine (Pc) 4, metallophthalocyanines (MPcs) 57 and their quaternized derivatives 4a7a were synthesized. Metal-free Pc 4 was prepared by cyclotetramerization of phthalonitrile derivate 3 and MPcs 57 were synthesized by heating 3 with NiCl2, CoCl2 and CuCl2 in n-pentanol in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene, respectively. Quaternization of the dimethylamino functionality produced quaternized octacationic water soluble metal-free, Ni, Co and Cu Pcs which were soluble in water, DMF, DMSO. The aggregation behaviour of these compounds were investigated in different concentrations of chloroform for metal-free, Ni, Co and Cu Pcs. The effect of solvents on absorption spectra were studied in various organic solvents. The novel compounds were characterized using IR, 1H-, 13C NMR, UV–vis and MS spectral data.  相似文献   

20.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号