首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution. The solubility and conductivity results indicated that inclusion complexes (ICs) of 1:1 stoichiometry were formed. The inclusion compounds were further characterized by using powder X-ray diffraction (XRD) analysis, 13C CP/MAS (cross-polarization magic-angle spinning) NMR and 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The results showed that the ICs were a fine crystalline powder. The host-guest system exhibited a channel-type structure and each glucose unit of beta-CD was in a similar environment. The decomposition temperature of the ICs was lower than that of bmimPF6 and beta-CD individually.  相似文献   

2.
The ability of alpha-cyclodextrin, beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin (alpha-CD, beta-CD and HP-beta-CD) to break pefloxacin mesylate (PM) aggregates by forming inclusion complexes has been studied using 1H NMR (nuclear magnetic resonance spectroscopy), 13C NMR and fluorescence spectra. The inclusion constants are determined to compare the corresponding inclusion capacity. Solid-inclusion complexes of PM with CDs are synthesized by coprecipitation method, and all the inclusion ratios are found to be 1:1. Additionally, spatial characterization of complexes has been proposed based on two-dimensional nuclear magnetic resonance technique (2D NMR) and spatial conformation is also investigated to propose two possible models between PM and CDs.  相似文献   

3.
4.
Journal of Thermal Analysis and Calorimetry - The use of cyclodextrins as carrier molecules is currently highly researched since they can improve not only the apparent water solubility and...  相似文献   

5.
AHTN (7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), commercially known as fixolide or tonalide, is a synthetic fragrance widely used in replace of natural musk odor which is more expensive. It is a popular fragrance material added in the manufacturing of personal care and household products, such as perfumes, soaps, shampoos, detergents, and fabric softeners. AHTN is semivolatile and is degraded under light exposure and high temperature. This work focuses on the complexation of AHTN with cyclodextrins in the effort to stabilize the fragrance material. AHTN was complexed with β-cyclodextrin, methyl (MβCD), and hydroxypropyl (HPβCD) derivatives in the mole ratio 1:1, 1:2, and 1:3 guest:host, and the complexes formed by physical mixing, co-precipitation, kneading, and freeze-drying were analyzed by DSC and FTIR. Percent AHTN included in the complex was also determined by hexane extraction and GC analysis. It was found that no inclusion complex was formed in the physical mixture. When co-precipitation method was performed, only βCD could form inclusion complex with AHTN, while the other two derivatives could not. Using 1:2 AHTN:βCD, no free AHTN was left in the complex as evidenced by DSC and FTIR spectrum. In kneading and freeze-drying methods, complexes could be formed with all CDs tested. However, co-precipitation method with 1:2 AHTN:βCD and kneading method with 1:2 AHTN:MβCD provided the highest complex yield with highest amount of AHTN included in the complex. AHTN in the complex form was more stable against high temperature and UV exposure than its free form.  相似文献   

6.
Study and characterization of molecular complexes between cholesterol and beta cyclodextrin has been done using X-ray diffraction, thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (13C NMR). Whatever the value of the molar ratio cholesterol/βCD used during the preparation, the same compound is always obtained. Corresponding to a molar ratio 1/3 (cholesterol/βCD), this compound is a stable hydrate which, contrary toβCD, contains at room temperature a large amount of molecules of water. It can be dehydrated under low pressure but the thermal degradation occurs at 200°C (250°C forβCD). This implies that cholesterol is strongly bounded toβCD.  相似文献   

7.
The preparation and characterization of the crystalline inclusion complexes between a polymeric guest, poly(1,3-dioxolane) (PDXL), and small-molecular hosts, cyclodextrins (CDs) are reported. It is observed that the polymer guest can form crystalline inclusion complexes with three kinds of cyclodextrins, which may be attributed to the high oxygen atom density in PDXL chain. The crystalline inclusion complexes were characterized with FTIR , TGA, X-ray diffraction, SEM, 1H NMR and 13C CP/MAS NMR spectroscopes. It was found that the crystalline inclusion complexes have higher temperature stability than the pure CDs. The X-ray powder diffraction patterns of the crystalline inclusion complexes proved that they have columnar structures. 13C CP/MAS NMR spectra of the crystalline inclusion complexes indicate that CDs adopt a more symmetrical conformation in the complexes, while pure CDs assume a less symmetrical conformation in the crystal without a guest inside their cavities. The morphology of the crystal was  相似文献   

8.
The slightly water-soluble anticancer drug camptothecin (CPT) and its inclusion complexes with cucurbit[n = 7, 8]uril (Q[n] (n = 7, 8)) were investigated. The formation of 1:2 complexes with Q[n] (n = 7, 8) in aqueous solution was confirmed by fluorescence spectroscopy and the apparent stability constants were determined to be higher than 3.01 × 1012 L2/mol2. The solid inclusion complexes of CPT and Q[n] (n = 7, 8) were also prepared by the co-evaporation method and characterized by Fourier transformation-infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction. Aqueous solubility and dissolution studies indicate that the complexes exhibited significantly increased dissolution rates compared with the pure drug and physical mixtures. The potential of Q[7] or Q[8] for stabilizing lactone modality of CPT was investigated by the High Performance Liquid Chromatography (HPLC) method. The results reveal more than 63% CPT lactone form (active form) in CPT-Q[7] or Q[8] complexes compared to only 36% CPT lactone form in the absence of Q[7] or Q[8] after being incubated in the phosphate buffer solution (pH 7.4 at 37°C) for 5 h.  相似文献   

9.
10.
The preparation, spectroscopic characterization and thermal stability of neutral complexes of uranyl ion, UO2 2+, with phosphonate ligands, such as diphenylphosphonic acid (DPhP), diphenyl phosphate (DPhPO) and phenylphosphonic acid (PhP) are described. The complexes were prepared by a reaction of hydrated uranyl nitrate with appropriate ligands in methanolic solution. The ligands studied and their uranyl complexes were characterized using thermogravimetric and elemental analyses, ESI-MS, IR and UV–Vis absorption and luminescence spectroscopy as well as luminescence lifetime measurements. Compositions of the products obtained dependent on the ligands used: DPhP and DPhPO form UO2L2 type of complexes, whereas PhP forms UO2L complex. Based on TG and DTG curves a thermal stability of the complexes was determined. The complexes UO2PhP·2H2O and UO2(DPhPO)2 undergo one-step decomposition, while UO2PhP · 2H2O is decomposed in a two-step process. The thermal stability of anhydrous uranyl complexes increases in the series: DPhPO < PhP < DPhP. Obtained IR spectra indicate bonding of P–OH groups with uranyl ion. The main fluorescence emission bands and the lifetimes of these complexes were determined. The complex of DPhP shows a green uranyl luminescence, while the uranyl emission of the UO2PhP and UO2(DPhPO)2 complexes is considerably weaker.  相似文献   

11.
Inclusion compounds of ferrocene(FcH) and its derivatives with cyclodextrins(CDs; -CD, -CD, and -CD) were prepared. CD-ferrocene inclusion compounds were obtained in a crystalline state in high yield. -CD and -CD formed 11 stoichiometric inclusion compounds with ferrocene and its derivatives. -CD formed 21 (CD:guest) complexes with ferrocene and the monosubstituted derivatives, but did not form complexes with 1,1-disubstituted derivatives, -CD-FcH and -CD-FcH complexes are thermally stable and do not liberate ferrocene on heating at 100°C in vacuo. The cyclodextrin inclusion compounds were characterized by1H-NMR, IR, UV, and CD spectra. A large positive induced Cotton effect was observed in the case of -CD-FcH complex, while the -CD-FcH complex showed a negative spectrum. The binding mode is discussed. -Cyclodextrin was found to form inclusion complexes in ethylene glycol, diethylene glycol, triethylene glycol, methyl cellosolve, ethyl cellosolve, methyl alcohol, and glycerine solutions. -CD also formed complexes in ethylene glycol solution. The binding of ferrocene by -CD is stronger in ethylene glycol than in dimethyl sulfoxide and dimethyl formamide.  相似文献   

12.
Solid inclusion complexes of two tanshinones (Tans): tanshinone IIA (Tan IIA), tanshinone I (Tan I) with beta-cyclodextrin (beta-CD) were synthesized by coprecipitation method. The solid inclusion complexes were characterized by using several analytical techniques: (1)H NMR spectra, IR spectra and thermal analysis. Stoichiometry of the inclusion complexes of Tans with beta-CD or HP-beta-CD is 1:1 which was investigated in solution. The formation constants of the complexes were determined by UV spectrophotometry. For same kind of CD, the stability was in the order: Tan IIA > Tan I; for same guest, the stability was in the order: HP-beta-CD > beta-CD. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, Delta G, Delta H, Delta S were determined as well. The experimental results indicate that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative entropic contribution. The inclusion interaction between CD and Tans satisfied the law of enthalpy-entropy compensation.  相似文献   

13.
The preparation of a 1:1 complex involving-cyclodextrin (-CD) and phenylpropiolic acid (PPA) is reported. The new inclusion complex of-CD has been characterized on the basis of its chemical analysis, thermal behavior, infrared spectrum, X-ray powder pattern and13C-NMR spectrum in DMSO solution.  相似文献   

14.
Gold nanoparticles (Au NPs), which are extremely useful materials for imaging and photothermal therapy, typically require a drug delivery system to transport them to the affected tissue and into the cells. Since liposomes are approved as drug carriers, complexes of liposomes with Au NPs were considered ideal solutions to deliver Au NPs to the target site in vivo. In this study, we prepared complexes of various liposomes with Au NPs via physical absorption and characterized them. The time dependency of the surface plasmon resonance of this complex, which is a unique property of Au NPs, shows that the liposomes promote the formation of stable dispersions of Au NPs under isotonic conditions, even though intact Au NPs aggregate immediately. From a release assay of calcein from liposomes and transmission electron microscopy analysis, the Au NPs were complexed with liposomes without membrane disruption. These complexes could be formed by using cationic liposomes and polyethylene glycol-modified liposomes, as well as by using phosphatidylcholine liposomes, which are useful for drug and gene delivery. We proposed this kind of complex as a nanomedicine with diagnostic and therapeutic ability.  相似文献   

15.
The formation of inclusion complexes with para-sulfonated calix[n]arene (PSC[n]A) was studied for carbamazepine (CBMZ), a poorly water soluble anticonvulsant drug. The effect of PSC[4]A and PSC[6]A on aqueous solubility of carbamazepine was studied extensively. The complete complexation of the drug was achieved after 48 h of shaking with PSC[n]A in water and evaporation of water to get solid complex. The interaction between PSC[n]A and CBMZ in solid state inclusion complexes was accomplished by aqueous phase solubility studies, HPLC, DSC, PXRD, FTIR, UV–Vis, and FT-Raman spectroscopy. The solubility of CBMZ increases as a function of PSC[n]A concentration. The results of the two phase solubility experiments are in good conformity to signify the formation of 1:1 (PSC[6]A:CBMZ) and 2:1 PSC[4]A:CBMZ complexes. The order of dissolution rate of CBMZ is inclusion complex > physical mixture > drug alone. The purpose of this study was to enhance solubility resulting in high dissolution rate and bioavailability of this essentially water insoluble drug.  相似文献   

16.
Summary Metal chelates of secondary cellulose acetate (SCA) with chromium(III), copper(II), cobalt(II), nickel(II) and UO 2 2+ were prepared and characterized by elemental analyses, magnetic moments and spectral studies. SCA acts as a uninegatively charged bidentate ligand and reacts with the metal ion via the oxygen atom of the secondary unacetylated hydroxyl group in the glucose subunit of the polymer, plus the oxygen atom of the vicinal ester group, to form a five-membered chelate ring.  相似文献   

17.
Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56?mmol?L?1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD?>?α-CD?>?γ-CD?>?β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15?mmol?L?1 citric acid dissolved 10?g?L?1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.  相似文献   

18.
19.
20.
The inclusion complexes (ICs) of alpha- and gamma-cyclodextrins (CDs) with high-molecular-weight poly(butylene succinate) (PBS) were prepared and characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, and solution 1H NMR spectroscopy. The resultant ICs were found to have channel structures. FT-IR data suggested that the ICs were stabilized by hydrogen bonds between the host CD molecules and the guest PBS chains. Through the formation of ICs, the PBS chain possibly adopts the kink conformation in the included state, as indicated by NMR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号