首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low aqueous solubility of celecoxib (CCB) hampers its oral bioavailability and permeation from aqueous environment through biological membranes. The aim of this study was to enhance the aqueous solubility of CCB by complexation with cyclodextrin (CD) in the presence of water-soluble polymer. The effects of different CDs (αCD, βCD, γCD, 2-hydroxypropyl-β-cyclodextrin and randomly methylated β-cyclodextrin (RMβCD)) and mucoadhesive, water-soluble polymers (hydroxypropyl methylcellulose (HPMC), chitosan and hyaluronic acid) were investigated. The phase solubility profiles and CCB/CD complex characteristics were determined. RMβCD exhibited the greatest solubilizing effect of the two CDs tested. However, γCD was also selected for further investigations due to its safety profile. Addition of polymer to the aqueous CD solutions enhanced the CD solubilization. Formation of CCB/RMβCD/HPMC and CCB/γCD/HPMC ternary complexes resulted in 11 and 19-fold enhancement in the apparent complexation efficiency in comparison to their CCB/CD binary complex, respectively. The size of ternary complex aggregates in solution were determined to be from about 250 to about 350 nm. The data obtained from Fourier transform infra-red, differential scanning calorimetry and powder X-ray diffraction indicated presence of CCB/CD inclusion complexes in the solid state. Proton nuclear magnetic resonance data demonstrated that CCB was partially and totally inserted into the hydrophobic central cavities of RMβCD and γCD.  相似文献   

2.
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and β-cyclodextrin (βCD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HPβCD and DAP/βCD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HPβCD and βCD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HPβCD, and consequently HPβCD was more efficient in improving DAP solubility than βCD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.  相似文献   

3.
The purpose of this study was to investigate the physicochemical properties of drug-saturated aqueous cyclodextrin (CD) solutions. Phase solubility profiles of different drugs were determined in aqueous solutions containing γ-cyclodextrin (γCD) and/or hydroxypropyl-γ-cyclodextrin (HPγCD) in absence or presence of water-soluble polymers. 1H-NMR and turbidity analysis were performed as well as permeation studies. Phase solubility diagrams showed that the observed γCD content (1–20% w/v) was only slightly different from the theoretical values for aqueous solutions that had been saturated with indomethacin, diclofenac sodium or amphotericin B, all displayed A-type profiles, while it was less than the theoretical value in solutions that had been saturated with corticosteroids (hydrocortisone and dexamethasone) that displayed BS-type profiles. In the latter case self-assemble of drug/CD complexes decreased the overall CD solubility. Water-soluble polymers enhanced aqueous solubility of the drugs tested by stabilizing the drug/CD complexes, i.e. enhancing their stability constants, without affecting the observed aqueous γCD solubility. When the drug solubility leveled off (the BS-type profiles) the amount of dissolved γCD increased and approached the theoretical values. Hydrocortisone formed partial inclusion complex with γCD and HPγCD and no non-inclusion or aggregates could be detected in diluted solutions by 1H-NMR. Both permeation and turbidity studies showed that formation of dexamethasone/γCD complex promoted CD aggregation. All these observations indicate that CD aggregate formations play a role in CD solubilization of lipophilic and poorly water-soluble drugs and that the water-soluble polymers enhance the complexation efficiency of γCD and HPγCD by stabilizing the self-assembled drug/CD nanoparticles and promote non-inclusion complex formation.  相似文献   

4.
The present work investigates the possibility of improvement of the complexation efficiency of cyclodextrin towards a drug by adding a third auxiliary component (hydrophilic polymer). Phase solubility Analysis at 25 °C was used to investigate the interaction of the drug in both the binary systems (viz. Drug-Cyclodextrin and Drug-Polymer) and the ternary system (Drug-Cyclodextrin-Polymer). The combined use of polymer and cyclodextrin was clearly more effective in enhancing the aqueous solubility of the fenofibrate in comparison with the corresponding drug-cyclodextrin or drug-polymer binary systems. Hydrophilic polymers increased the complexation efficacy of cyclodextrin towards fenofibrate (as shown by the increased stability constants of the complexes). Polyvinyl Pyrollidone (PVP) was found to be most effective in enhancing the solubilization of fenofibrate by β-Cyclodextrin, the best results were obtained in ternary system with β-Cyclodextrin in presence of 1%w/v (PVP). Formulated ternary system with optimized drug:cyclodextrin:polymer ratio of 1:3.5:1 w/w resulted in a significant improvement in the dissolution rate of fenofibrate and showed 90% dissolution efficiency (D.E) as compared to around 15% and 83% of the plain drug and binary system respectively. DSC studies was carried out to characterize the ternary complex.  相似文献   

5.
Cyclodextrins are cyclic oligosaccharides, capable of forming inclusion complexes with many active substances. This way, the aqueous solubility and rate of dissolution of active substances can be changed. For this research we have selected celecoxib as the model active substance, due to its low water solubility, high lipophilicity, and high intestinal permeability. Usually, the amount of cyclodextrin complex that can be incorporated into a pharmaceutical dosage form is limited. The usage of hydrophilic polymers can overcome this problem. In this study, we wanted to point out the potential of various types of hydrophilic polymers for enhancing the complex formation efficiencies, and to highlight the possible use of alginate as a solubility stabilizer/enhancer and as a microsphere matrix polymer. The phase solubility investigation showed greater stability constants (> 250 M?1) in ternary complexes than in the binary complex, which is a good indicator of the complex formation enhancer properties of these hydrophilic polymers. The relative solubilizing efficiency decreased in the next order: PVP K25 (6.49) > Sodium alginate (6.26) > PEG 6000 (5.72) > without polymer (4.81). The DSC curves showed that all samples that were prepared with β-cyclodextrin (both complexes and physical mixtures) had lower melting endotherms at 160 °C than pure celecoxib. XRD confirmed the complex formation by partial celecoxib amorphisation. The dissolution studies of the prepared microspheres revealed that all samples had different release rates (shown by the similarity factor f2, which was 36.37, 42.46 and 38.11 % respectively) and that the use of β-cyclodextrin increased the dissolution rate of celecoxib from alginate microspheres in a controlled manner. We concluded that sodium alginate could act as a complex stabilizing/enhancing agent and as a microsphere matrix polymer, at the same time.  相似文献   

6.
Studies have shown that cyclodextrins form both inclusion and non-inclusion complexes and that several different types of complexes can coexist in aqueous solutions. In addition, both cyclodextrins and cyclodextrin complexes are known to form aggregates and it is thought that these aggregates are able to solubilize drugs through micellar-type mechanism. Thus, stability constants determined from phase-solubility profiles are rarely true stability constants for of some specific drug/cyclodextrin complexes. A more precise method for evaluation of the solubilizing effects of cyclodextrins is to determine their complexation efficiency (CE). CE can be determined by measuring the solubility of a given drug at 2–3 cyclodextrin concentrations in pure water or a medium constituting the pharmaceutical formulation such as parenteral solution or aqueous eye drop formulation. Based on the CE value the drug:cyclodextrin ratio in the complexation medium can be determined as well as the increase in the formulation bulk in a solid dosage form. Determination of CE is a simple method for quick evaluating the solubilizing effects of different cyclodextrins and/or the effects of excipients on the solubilization. Here we report the CE of 43 different drugs with mainly 2-hydroxypropyl-β-cyclodextrin but also with randomly methylated β-cyclodextrin as well as few other cyclodextrins. Calculation of CE, drug:cyclodextrin molar ratio and the increase in the formulation bulk is discussed, as well as the influence of the intrinsic solubility and drug lipophilicity on the CE.  相似文献   

7.
Human Papilloma Virus (HPV) infections are the major cause of cervical cancers. To achieve a better therapeutic efficacy and patient compliance in the treatment for HPV-induced cervical cancers, anticancer agent 5-fluorouracil has been formulated in a vaginal gel using the thermosensitive polymer Pluronic® F127 together with alternative mucoadhesive polymers e.g., hyaluronic acid, Carbopol 934 and hydroxypropylmethylcellulose. To increase its aqueous solubility and to achieve the complete release of 5-FU from the gel, the drug was incorporated as its inclusion complex with 1:1 molar ratio with either β-cyclodextrin or hydroxypropyl-β-cyclodextrin. Following the characterization of drug:CD complexes, thermosensitive gel formulations containing different mucoadhesive polymers and the drug in free or complexed form were characterized in vitro by determining the gelation temperature and the rheological behavior of different formulations along with the in vitro release profiles of these formulations in pH 5.5 citrate buffer. It was observed that complexation with cyclodextrin accelerated the release of 5-FU with the exception of formulation containing Carbopol 934 as mucoadhesive polymer. As far as rheological properties are concerned, favorable thermosensitive in situ gelling properties were obtained with formulations containing HPMC as mucoadhesive polymer. Complete release of 5-FU from gels were obtained with both complexes of β-CD and HP-β-CD and cytotoxicity studies against HeLa human cervical carcinoma cells demonstrated that 1% 5-FU:CD complexes were equally effective as 1% free 5-FU indicating better therapeutic efficacy with lower dose.  相似文献   

8.
The purpose of the present work was to investigate the interaction of drugs and octanol with hydroxypropyl β- (HPβCD) and γ- (HPγCD) cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD) and randomly methylated-β-cycoldextrin (RMβCD) and to describe the interaction by theoretical models. The poorly soluble steroid drugs progesterone, estrone and prednicarbate were used as model compounds in this study. Hexane and chloroform were also investigated in combination with HPβCD. Octanol formed a complex with all cyclodextrins and the saturation of the aqueous solution with this solvent therefore had a significant effect on the solubilization and extraction potential of cyclodextrins. Hexane had less affinity for cyclodextrins, but the drugs were poorly soluble in this solvent and it could therefore not be used in phase-distribution investigations. Previously we have derived equations that can be used to account for the competitive interaction between two guest compounds that compete for space in the cyclodextrin cavity. These equations were rearranged to calculate the complexation efficacy from phase-solubility data. An equation was derived that obtains intrinsic solubility (S 0) and intrinsic partition coefficient (P) from the slopes of the phase-solubility and phase-distribution profiles. Investigation of the data showed that the results could not be sufficiently explained by the “classical” drug/cyclodextrin complex model that recognizes the possibility of competitive interactions but ignores any contribution from higher order complexes or aggregation of the cyclodextrin complexes. Relative difference in solubilization potential of different cyclodextrins cannot be translated to relative differences in extraction efficacy. Thus, for these three steroid compounds, RMβCD and SBEβCD gave the best solubilization potential whereas the best extraction efficacy was observed with HPγCD.  相似文献   

9.
Possibility of encapsulation of riboflavin and alloxazine by ??- and ??-cyclodextrins in aqueous solution was studied by 1H NMR and solubility methods. Thermodynamic parameters of 1:1 inclusion complex formation (K, ??cG0, ??cH0 and ??cS0) were obtained and analyzed in terms of influence of reagent??s structure on complexation process. It was shown that ??-cyclodextrin displays low binding affinity to riboflavin and alloxazine. On the contrary, ??-cyclodextrin forms with riboflavin and alloxazine more stable inclusion complexes. Binding is accompanied by the negative enthalpy and entropy changes that are determined by predominance of van der Waals interactions and possible H-bonding. The presence of ribityl substituent in riboflavin molecule prevents the deep penetration of this compound into macrocyclic cavity. Proposed on the basis of 1H NMR data the partial insertion of the hydrophobic part of riboflavin and alloxazine molecules into the ??-cyclodextrin cavity causes the enhancement of aqueous solubility of the encapsulated substances. In comparison with ??-cyclodextrin, the solubilizing effect of ??-cyclodextrin is more pronounced due to its higher binding affinity to alloxazine and riboflavin.  相似文献   

10.
Complexation in solution between danazol and two different cyclodextrins [2-hydroxypropyl-??-cyclodextrin (HP-??-CD) and 2-hydroxypropyl-??-cyclodextrin (HP-??-CD)] was studied using phase solubility analysis, and one- and two-dimensional 1H-NMR. The increase of danazol solubility in the aqueous cyclodextrin solutions showed a linear relationship (AL profile). The apparent stability constant, K 1:1, of each complex was calculated and found to be 51.7 × 103 and 7.3 × 103 M?1 for danazol?CHP-??-CD and danazol?CHP-??-CD, respectively. 1H-NMR spectroscopic analysis of varying ratios of danazol and the different cyclodextrins in a mixture of EtOD?CD2O confirmed the 1:1 stoichiometry. Cross-peaks, from 2D ROESY 1H-NMR spectra, between protons of danazol and H3?? and H5??of cyclodextrins, which stay inside the cyclodextrin cavity, proved the formation of an inclusion complex between danazol and the cyclodextrins. For HP-??-CD, the inclusion complex is formed by entrance of the isooxazole and the A rings of danazol in the cyclodextrin cavity. For HP-??-CD, two different inclusion structures may exist simultaneously in solution: one with the isooxazole and A ring in the cavity and the other with the C and D ring inside the cavity. DLS showed that self-aggregation of the CD??s was absent in the danazol HP-??-CD system up to a CD concentration of 10% and in the danazol HP-??-CD system up to a CD concentration of 5%.  相似文献   

11.
The objective of this study was to improve poor aqueous solubility and dissolution properties of anticancer drug rapamycin through formation of inclusion complexes with natural and modified cyclodextrins. Of the cyclodextrins tested, ??-cyclodextrin and hydroxypropyl-??-cyclodextrin did not complex with rapamycin. However, complexes of rapamycin with ??-cyclodextrin, methyl-??-cyclodextrin and hydroxypropyl-??-cyclodextrin were prepared and characterized by techniques such as Fourier Transform infrared spectroscopy, differential scanning calorimetry, phase solubility analysis and in vitro dissolution studies. According to the characterization data for the complexes, rapamycin water solubility was highly enhanced by all three ??-cyclodextrins with methyl-??-cyclodextrin complex resulting in particularly higher solubility enhancement. FTIR spectra and DSC thermograms supported the formation of inclusion complexes. The complexes showed highly improved dissolution rate in water. Complexation with cyclodextrin derivatives such as methyl-??-cyclodextrin and hydroxypropyl-??-cyclodextrin can provide promising alternatives for the formulation of rapamycin.  相似文献   

12.
The present work was performed to investigate the effect of chitosan, a well known hydrophilic polymer with both enhancer and solubilizing properties, on the solubilizing and complexing abilities of cyclodextrins towards drugs. With this aim, phase-solubility studies were carried out with a series of model drugs, both of acid and basic nature and with different water-solubility and lipophilicity values, in the presence of chitosan and cyclodextrin (ß- or hydroxypropyl-ß-cyclodextrin), both separately (binary systems) and in combination (ternary systems). Unexpectedly, differently from the favorable effect reported in literature for various hydrophilic polymers, the addition of chitosan to the cyclodextrin complexation medium caused a decrease in the cyclodextrin complexing power towards all the examined drugs, independent from their very different physicochemical properties. On the contrary, the influence of the polymer on the cyclodextrin solubilizing efficiency was found to be dependent on the type of drug and both positive, or negative or non-significant effects were observed. The overall results are explained in terms of a common basic mechanism due to the presence of chitosan–cyclodextrin interactions, which hindered the drug–cyclodextrin complex formation, thus causing the binding constant reduction; the simultaneous presence of drug–chitosan and/or chitosan–(drug–cyclodextrin complex) interactions, different from drug to drug, were considered responsible for the distinct (and sometimes opposite) effects observed in the drug solubilizing efficiency of ternary systems.  相似文献   

13.
The natural β-cyclodextrin (βCD) and its complexes have limited solubility in aqueous solutions. This low aqueous solubility, as well as low aqueous solubility of the guest molecule (i.e. triclosan or triclocarban (TCC)), can result in low complexation efficiency (CE). The purpose of this study was to enhance the apparent intrinsic solubility (S 0) of the guest molecule and its βCD complexes through ionization and addition of auxiliary compounds such as polymers, amino acids and metal ions. Both triclosan (pK a 7.9) and TCC (pK a 12.7) are weak acids. Addition of ethanol to the complexation medium enhanced S 0 of both triclosan and TCC but at the same time ethanol lowered the stability constant (K c ) of their βCD complexes resulting in overall lowering of CE. Addition of small amount of water-soluble polymers enhanced the βCD solubilization of both guests, and addition lysine enhanced the solubilization of TCC. Ionization of triclosan resulted in significant enhancement of CE and enhanced triclosan release from tablets containing triclosan/βCD complex. The effect of ionization was not as pronounced in the case of TCC.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

14.
Summary: In the present work water-soluble lactose based oligomers of β-cyclodextrin were synthesized by a simple and efficient condensation polymerization process. Proposed water-soluble β-cyclodextrin oligomers were prepared by controlled reaction between β-cyclodextrin and a triazine linker and purification by an ultrafiltration process. Similarly, lactose based β-cyclodextrin oligomers were synthesized for enhanced water solubility. The physical and chemical properties of the synthesized polymers were characterized by FT-IR and 1H NMR spectroscopy, XRD analysis, thermogravimetric analysis (TGA) and aqueous solubility determination.. Molecular weights of these β-cyclodextrin based oligomers were measured by ESI technique. These β-cyclodextrin based water-soluble oligomers polymers were used as supramolecular carriers for efavirenz (an anti HIV drug), improving the inclusion property and aqueous solubility properties of this drug. These synthesized oligomers were found to improve stability and aqueous solubility of efavirenz on their (1:1) inclusion complex through phase solubility and dissolution studies. Reduced cytotoxicity than the parent β-CD was observed in hemolysis test.  相似文献   

15.
The aim of this study was to investigate the effect of hydroxypropyl-??-cyclodextrin (HP??CD) on the solubility and dissolution rate of Cefdinir (CEF). The methods that were employed to prepare CEF?CHP??CD complexes were Kneading (KN), Co-evaporation (CE), Spray drying (SD) and a novel approach of Microwave irradiation (MWI). The formation of inclusion complexes with HP??CD in the solid state, were characterized by Differential Scanning Calorimetry (DSC), Fourier Transformation Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (NMR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies, and comparative studies on the in vitro dissolution of CEF were carried out. Phase solubility profile with HP??CD was classified as AL type, indicating the formation of 1:1 stoichiometric inclusion complexes. Characterization of binary systems by DSC, FTIR, NMR, XRD and SEM indicated that SD and MWI method resulted in formation of true complexes. Binary systems showed significant increase in dissolution rate as compared to plain drug. Amongst the various binary systems, MWI products were prepared in least time with better yield and highest dissolution rate.  相似文献   

16.
Disulfiram (DS), known as an anti-alcoholism drug, has shown a potent antiviral activity. Still, the potential clinical application of DS is limited by its low water solubility and rapid metabolism. Cyclodextrins (CDs) have been widely used to improve the solubility of drugs in water. In this study, five concentrations of hydroxypropyl β-cyclodextrin (HP) and sulfobutyl ether β-cyclodextrin (SBE) were used to form inclusion complexes of DS for enhanced solubility. Solutions were freeze-dried, and the interaction between DS and CD was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). In addition, the nebulization properties of the DS–CD solutions were studied. The aqueous solubility of DS increased significantly when loaded to either of both CDs. The phase solubility of both complexes was a linear function of the CD concentration (AL type). Furthermore, physicochemical characterization studies showed a potent inclusion of the drug in the CD–DS complexes. Aerosolization studies demonstrated that these formulations are suitable for inhalation. Overall, the CD inclusion complexes have great potential for the enhancement of DS solubility. However, further studies are needed to assess the efficacy of DS–CD inclusion complexes against SARS-CoV-2 via nebulization.  相似文献   

17.
The present study was aimed at synthesizing and characterizing star copolymers of ??-cyclodextrin and exploring their application as nanocarriers. The copolymers of ??-cyclodextrin and polypropylene oxide were synthesized by using ring opening polymerization, catalyzed by base, under high temperature and pressure. The polymers of different molecular weight were synthesized by increasing chain length of polypropylene oxide at optimized temperature, pressure and concentration of catalyst. The structure of synthesized polymer was confirmed by IR and NMR. Molecular weight and molecular weight distribution was evaluated by hydroxyl number and gel permeation chromatography respectively. Amphiphilic nature of the polymers was evaluated by determining the solubility in water and different organic solvents. For the evaluation of polymer as a nanocarrier, Ibuprofen was selected as model drug. Loading efficiency and release of Ibuprofen from the complex were also investigated. It was observed that, with increase in the molecular weight of the polymers, loading capacity was increased.  相似文献   

18.
On the basis of hydrophilic copolymers of N-vinylamides??N-vinylpyrrolidone and N-methyl-N-vinylacetamide??that contain carboxylic or activated ester groups, new polymeric ??-cyclodextrin derivatives are synthesized via polymer-analogous transformations. Their solubility in water depends on the content of ??-cyclodextrin and the types of hydrophilic and reactive comonomers.  相似文献   

19.
《中国化学快报》2022,33(8):4043-4047
As a member of the curcuminoid compound family, curcumin (Cur) has many interesting therapeutic properties. However, its low aqueous solubility and stability have resulted in poor bioavailability and restricted clinical efficacy. Based on size matching, β-cyclodextrin polymer (β-CDP), with its hydrophilic polymer chains and hydrophobic cavities, can form an inclusion complex with Cur. To improve the water solubility and stability of Cur, a simple and eco-friendly grinding method was designed to form β-CDP inclusion complexes. According to the Boltzmann–Hamel's method and Job's method, the molar ratio of the β-CD unit in β-CDP to Cur was determined to be 1:1. The diffusion coefficient and diffusion activation energy of Cur-β-CDP were calculated in an electrochemical study. This supramolecular complex worked well in vitro to inhibit the proliferation of hepatoma carcinoma cells HepG2. Remarkably, this method visibly reduced the undesirable side effects on normal cells, without weakening the anti-cancer activity of the drugs. We expect that the obtained host–guest complex will provide a new approach for delivering natural drug molecules, having low water solubility.  相似文献   

20.
In this study, we compared the suitability of parent β-cyclodextrin (βCD) and its water soluble polymeric derivative (PβCD) as co-grinding additives aimed to enhance the solubility of zaleplon (ZAL), a hypnotic drug. Equimolar drug/carrier mixtures were co-ground in a high-energy micromill over different time intervals. Data obtained by differential scanning calorimetry, X-ray powder diffractometry and scanning electron microscopy showed a higher affinity of ZAL for the solid state interaction with PβCD, resulting in powders with lower relative drug crystallinity (RDC) compared to that obtained with natural βCD (RDC = 51.10 and 12.5 % for complexes with βCD and PβCD co-grounded for 90 min, respectively). On the other hand, grinding the drug alone did not result in a significant reduction of the drug crystallinity (RDC = 99.87 % for the sample ground for 90 min). Although 1H-NMR spectroscopy confirmed that both co-ground products were readily converted into inclusion complexes upon dissolution in water, they presented different dissolution properties. The dissolution velocity of co-ground complex with PβCD was 25 % faster compared to that prepared with the parent βCD and almost double compared to that of the drug alone, irrespective of the pH value of the dissolution media. This clearly demonstrated the suitability of co-ground ZAL/PβCD complex in the development of an immediate release oral formulation of ZAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号