首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
Dipolar and single-phase two-electrode quadrupolar detection schemes have been investigated at a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) setup built for the KATRIN experiment at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg. We present first experimental results of 7Li?+? signals from a cylindrical Penning trap configuration for both detection schemes. While the prominent signal of the conventional dipolar detection scheme marks the reduced cyclotron frequency, the main signal for the quadrupolar detection appears at the sum of the reduced cyclotron frequency and the magnetron frequency. For ideal trapping fields, this sum frequency equals the ion cyclotron frequency ?? c ?=?qB/(2??m). Sidebands due to the combined motions of the cyclotron mode and magnetron mode are observed by quadrupolar detection which allows the determination of the respective combinations of eigenfrequencies.  相似文献   

2.
TITAN is an on-line facility dedicated to precision experiments with short-lived radioactive isotopes, in particular mass measurements. The achievable resolution on mass measurement, which depends on the excitation time, is limited by the half life of the radioactive ion. One way to bypass this is by increasing the charge state of the ion of interest. TITAN has the unique capability of charge-breeding radioactive ions using an electron-beam ion trap (EBIT) in combination with Penning trap mass spectrometry. However, the breeding process leads to an increase in energy spread, ??E, which in turn negatively influences the mass uncertainty. We report on the development of a cooler Penning trap which aims at reducing the energy spread of the highly charged ions prior to injection into the precision mass measurement trap. Electron and proton cooling will be tested as possible routes. Mass selective cooling techniques are also envisioned.  相似文献   

3.
The low-energy beam and ion trap facility LEBIT at NSCL/MSU is at present the only facility where precision experiments are performed with stopped rare isotope beams produced by fast-beam fragmentation. LEBIT combines high-pressure-gas stopping with advanced ion manipulation techniques to provide brilliant low-energy beams. So far these beams have mainly been used for mass measurements on short-lived rare isotopes with a 9.4T Penning trap mass spectrometer. Recent examples include 70m Br , located at the proton dripline, 32Si and the iron isotopes 63-65Fe . While the measurement of 32Si helps to solve a long-standing dispute over the validity of the isobaric multiplet mass equation (IMME) for the A = 32 , T = 2 multiplet, the mass measurements of 65m,g Fe marked the first time a nuclear isomeric state has been discovered by Penning trap mass spectrometry.  相似文献   

4.
High quality measurements in respect to accuracy, resolving power and sensitivity using negative osmium ions confined in ion traps will contribute to answer questions in modern fundamental physics. A proposed system to carry out these measurements would require a laser desorption ion source, and an ion-trap system. Following the recent laser spectroscopy investigations at the Max-Planck Institute for Nuclear Physics in Heidelberg, the goals of the proposed system should focuss on the laser cooling of negative osmium ions since such a system could be used to cool antiprotons to very low temperatures via collisions (sympathetic cooling) for efficient antihydrogen formation in its ground state. Furthermore, together with rhenium ions, the confinement of osmium ions in a Penning trap is important to determine the mass difference 187Re-187Os, and therefore the Q-value in the decay of 187Re (T 1/2?=?4×1010 years) with unprecedented accuracy. This Q-value is an important constraint for the determination of the mass of the electron antineutrino as aimed by the international MARE collaboration. In this paper several mechanisms are considered for the preparation of the negative ions in order to apply laser cooling.  相似文献   

5.
The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 ×10???8. The four main components in the facility are an RF cooler/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4×104 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5×10???8. This would check previous conflicting measurements and provide information for nuclear theory and models.  相似文献   

6.
The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/c 2 (90% C.L.) on the neutrino rest mass.  相似文献   

7.
We report here about measurements of reaction and decay Q values by precise determination of pairs of atomic masses. These were performed with the Penning trap mass spectrometer SMILETRAP. Measurements with Penning traps give reliable and accurate masses, in particular Q values, due to the fact that certain systematic errors to a great deal cancel in the mass difference between the two atoms defining the Q value. Some Q values that are of fundamental interest will be discussed here, for example, a new Q value for the 6Li (n,γ) 7Li reaction, for the β-decay of tritium, related to properties of the electron neutrino mass, and for the neutrino-less double β-decay of 76Ge, related to the question of whether the neutrino is a Majorana particle or not. In case of the latter two we report the most accurate Q values, namely 18,589.8(12) eV for the tritium decay and 2,038.997(46) keV for the neutrino-less double β-decay of 76Ge.  相似文献   

8.
The KArlsruhe TRItiumNeutrino experiment (KATRIN) will measure a “kinematical” electron antineutrino mass upper limit up to 0.2 eV/c2. The experimental setup based on an electrostatic spectrometer with adiabatic magnetic collimation and windowless gaseous tritium source is briefly described. This sensitivity to the neutrino mass could be reached with a 10-m-diameter spectrometer after three years of data taking. Several major sources of the systematic errors are discussed.  相似文献   

9.
Direct neutrino mass experiments are complementary to searches for neutrinoless double β-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c2 . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c2 by increasing strongly the statistics and—at the same time—reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium β-decay experiments cryo-bolometers investigating the endpoint region of 187Re β-decay or the electron capture of 163Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.  相似文献   

10.
The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver “contaminations”, i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors—if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury–Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with 133Cs+ ions from an off-line ion source and by application to an on-line beam of 179Lu+ ions contaminated with 163Dy16O+ ions. In addition, an optimization of the experimental procedure is given, in particular for the number of ion bunches captured as a function of the ions’ lifetimes and the parameters of the experiment .  相似文献   

11.
Doubly charged silver clusters Agn 2+, n=21, 22, 23, are produced by electron bombardment of an Agn + ensemble stored in a Penning trap. After mass selection the clusters are subjected to collision induced dissociation. The fragmentation channels are determined by time-of-flight mass spectrometry after ejection of the resulting ion ensemble from the trap. Monomer evaporation is the only decay path observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   

13.
A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of 238U . The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source.  相似文献   

14.
The objective of KATRIN is the determination of the mass of the electron anti-neutrino with a sensitivity of 200 meV by investigating the kinematics of the electrons from tritium β decay. It is currently under construction at KIT (Karlsruhe Institute of Technology).A key component of the KATRIN experiment is the Windowless Gaseous Tritium Source (WGTS), in which molecular tritium decays with an activity of 1011 Bq. A precise understanding of the properties of the WGTS is mandatory for the neutrino mass determination. In particular the gas dynamics is crucial since the measured energy spectrum is influenced by inelastic scattering of the decay electrons with the tritium molecules as well as Doppler broadening of the electron energy. Therefore parameters of the WGTS such as purity, temperature, density and velocity distributions of the tritium gas and the magnetic field strength inside the WGTS have to be modeled in detail.This talk gives an overview of the simulation and modeling program package currently in development which allows us to study the influence of the WGTS parameters on the measured electron energy spectrum.  相似文献   

15.
The KATRIN experiment is going to search for the mass of the electron antineutrino down to 0.2eV/c 2. In order to reach this sensitivity the background rate has to be understood and minimised to 0.01 counts per second. One of the background sources is the unavoidable Penning-like trap for electrons due to the combination of the electric and magnetic fields between the pre- and the main spectrometer at KATRIN. In this article we will show that by sweeping a conducting wire periodically through such a particle trap stored particles can be removed, an ongoing discharge in the trap can be stopped, and the count rate measured with a detector looking at the trap is reduced.  相似文献   

16.
The low-energy beam and ion trap facility LEBIT at the NSCL at MSU has demonstrated that rare isotopes produced by fast-beam fragmentation can be slowed down and prepared such that precision experiments with low-energy beams are possible. For this purpose high-pressure gas-stopping is employed combined with advanced ion manipulation techniques. Penning trap mass measurements on short-lived rare isotopes have been performed with a 9.4 T Penning trap mass spectrometer. Examples include 66As, which has a half-live of only 96 ms, and the super-allowed Fermi-emitter 38Ca, for which a mass accuracy of 8 ppb (280 eV) has been achieved. The high accuracy of this new mass value makes 38Ca a new candidate for the test of the conserved vector current hypothesis.   相似文献   

17.
The measurement and comparison of the magnetic moment (or g-factor) of the proton and antiproton provide a stringent experimental test of the CPT-theorem in the baryonic sector (Quint et al., Nucl Instrum Methods Phys Res, B 214:207, 2004). We present an experimental setup for the first direct high-precision measurement of the g-factor of a single isolated proton in a double cylindrical Penning trap. The application of the continuous Stern-Gerlach effect to detect quantum jumps between the two spin states of the particle, together with a novel trap design specially developed for this purpose, offers the possibility of measuring the magnetic moment not only of a single proton but also of a single antiproton. It is aimed to achieve a relative uncertainty of 10???9 or better. Preliminary results including mass spectra of particle clouds as well as single proton preparation and detection are shown.  相似文献   

18.
The aim of the KATRIN experiment is to determine the neutrino mass directly, with a sensitivity of 0.2 eV (90% CL). KATRIN is located at KIT (Karlsruhe Institute of Technology) and is currently under construction (J. Angrik et al., 2004 [3]).The experiment will analyze the shape of the tritium β-spectrum in the region of the tritium endpoint. A nonzero neutrino mass reduces the maximal energy of the electron and changes the shape of the tritium spectrum, especially close to the endpoint. To reach the sensitivity KATRIN is aiming for, an high energy resolution as well as high statistics and low background are needed. In order to achieve this, KATRIN uses the MAC-E-Filter (Magnetic Adiabatic Collimation followed by Electrostatic Filter) principle, and several background reduction mechanisms. The optimization of both MAC-E-Filter and background reduction is the main challenge of the electromagnetic design. This article describes how these issues are tackled and discusses the actual realization of two major electromagnetic design components.  相似文献   

19.
Aims. KATRIN is a neutrino mass experiment based on the kinematics of tritium β-decay. This work presents the methods employed at KATRIN to reduce the spectrometer-related background.Methods. The electrode system of the main spectrometer includes a modular double-layer wire grid for electrostatic screening of background. The key features of the wire electrode and the underlying design criteria of the optimisation procedure are described.Status. Fabrication of the wire electrode modules is completed and installation into the KATRIN main spectrometer has started.  相似文献   

20.
The study of β-delayed neutron emission plays a major role in different fields such as nuclear technology, nuclear astrophysics and nuclear structure. However the quality of the existing experimental data nowadays is not sufficient for the various technical and scientific applications and new high precision measurements are necessary to improve the data bases. One key aspect to the success of these high precission measurements is the use of a very pure ion beam that ensures that only the ion of interest is produced. The combination of the IGISOL mass separator with the JYFLTRAP Penning trap is an excellent tool for this type of measurement because of the ability to deliver isobarically and even isomerically clean beams. Another key feature of the installation is the non-chemical selectivity of the IGISOL ion source which allows measurements in the important region of refractory elements. This paper summarises the β-delayed neutron emission studies that have been carried out at the IGISOL facility with two different neutron detectors based on 3He counters in a polyethylene moderator: the Mainz neutron detector and the BEta deLayEd Neutron detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号