首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new radioactive beam facility for ATLAS,the Californium Rare Ion Breeder Upgrade (CARIBU), is under construction.The facility will use fission fragments from a 1 Ci ~(252)Cf source;thermalized and collected into a low-energy beam by a helium gas catcher.In order to reaccelerate these beams,the existing ATLAS ECR-I ion source is being redesigned to function as a charge breeder source.The design and features of this charge breeder configuration is discussed and the project status described.  相似文献   

2.
3.
The Canadian Penning Trap (CPT) mass spectrometer is a device used for high-precision mass measurements on short-lived isotopes. It is located at the ATLAS superconducting heavy-ion linac facility where a novel injection system, the RF gas cooler, allows fast reaction products to be decelerated, thermalized and bunched for rapid and efficient injection into the CPT. The CPT spectrometer and its injection system will be described in detail and its unique capabilities with respect to its initial physics program, concentrating on isotopes around the N=Z line with particular emphasis on isotopes of interest to low-energy tests of the electroweak interaction and the rp-process, will be highlighted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 neutron-rich fission fragments per second are produced in the 1 g U-235 target. Ions with an energy of 30 keV are extracted from the ion source. In the mass separator two isotopes can be selected. One of the beams is used for low energy experiments, the other one is injected into an ECRIS (or EBIS) for charge breeding to a q/A≥0.16. A gas filled RFQ cooler is used for emittance improvement. The subsequent LINAC delivers beams with an energy ranging from 3.7 MeV/u to 5.9 MeV/u. New IH structures are being developed at the Munich tandem laboratory. A small storage ring is planned in a further stage to recycle the fission fragments. A thin target foil can be placed into this ring, e.g., for synthesis of super-heavy elements. The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test long term stability and safety tests were in progress.  相似文献   

5.
The Rare isotope Accelerator Of Newness(RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project(RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to200-MeV/u-uranium with continuous wave(CW) power of 400 k W to support research in various scientific fields.Its system consists of an ECR ion source, LEBTs with 10 ke V/u, CW RFQ accelerator with 81.25 MHz and 500 ke V/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator(QWR) section with 81.25 MHz and a Half Wave Resonator(HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton,deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 ke V/u to 1.5 MeV/u and currents in the m A range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D~+RFQ design. The D~+RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed.  相似文献   

6.
An ion catcher as presented in this contribution is able to create cooled and very clean singly-charged ion pulses out of a ‘hot’ beam within a very short period of time. Precision measurements on shortlived radioactive nuclides become possible. This contribution describes experiments with a 252Cf fission source at the ‘gas-cooler’ at ATLAS (Argonne Tandem Linac Accelerating System) at the Argonne National Laboratories (ANL), Argonne, USA[1]. The system consists of a gas-cell to stop and thermalize the ions, two extraction radio frequency quadrupole structures (RFQ) to separate the ions from the buffer gas and a buncher RFQ to cool and accumulate the ions. The system and its performance is investigated with two independent measurements. The transported activity was measured to determine the efficiency of the system and time of flight measurements (TOF) were performed to determine the transported masses with respect to the transported activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
ADS注入器Ⅰ高频四极场(RFQ)功率源系统将为325MHz RFQ提供连续波功率,使束流离开RFQ时,其能量达到几MeV。功率源系统除了补偿RFQ腔耗外,还必须提供足够的功率以保证RFQ中的加速电场。ADS注入器ⅠRFQ功率源系统主要包括600kW连续波速调管、80kV/18A基于脉冲步进调制技术的PSM电源、环流器以及相应的波导传输系统等。根据ADS总体指标和RFQ的相关技术参数,提出了功率源的总体布局、技术指标以及设计要求等,在此基础上完成系统安装与调试,并通过专家组测试与验收。  相似文献   

8.
The low-energy beam and ion trap facility LEBIT at NSCL/MSU is at present the only facility where precision experiments are performed with stopped rare isotope beams produced by fast-beam fragmentation. LEBIT combines high-pressure-gas stopping with advanced ion manipulation techniques to provide brilliant low-energy beams. So far these beams have mainly been used for mass measurements on short-lived rare isotopes with a 9.4T Penning trap mass spectrometer. Recent examples include 70m Br , located at the proton dripline, 32Si and the iron isotopes 63-65Fe . While the measurement of 32Si helps to solve a long-standing dispute over the validity of the isobaric multiplet mass equation (IMME) for the A = 32 , T = 2 multiplet, the mass measurements of 65m,g Fe marked the first time a nuclear isomeric state has been discovered by Penning trap mass spectrometry.  相似文献   

9.
Projectile fission of 750 AMeV 238U-ions interacting with a Pb target was studied by means of the spectrometer FRS, GSI-Darmstadt. One of the two fission fragments was detected with a transmission of few percent and identified in mass and charge. Low-energy fission (E* < 25 MeV) events were selected by their magnetic rigidity. Whereas the production of asymmetric fission events is dominated by the GDR excitation, very asymmetric fission and symmetric fission take place after a GQR or DGDR excitation or after a nuclear interaction. Cross sections of more than 250 isotopes were measured. Isotopic distributions of low-energy fission were reconstructed for elements from Se to Te. The fission modes SI, SII and SL were clearly shown in these distributions and in the mass and TKE distributions. Charge polarization and mass dispersion were deduced for each fission mode. Finally, the characteristics of the low-energy fission process explain the production rates of neutron-rich species. Received: 14 July 1997 / Revised version: 6 October 1997  相似文献   

10.
The accelerator group at INFN-LNL has been mostly engaged, recently, in completing and commissioning the higher current injector of the linac booster ALPI (named PIAVE) and in constructing and assembling the front-end part of a high current driver linac for the RNB facility SPES. PIAVE, designed to accelerate ions with A/Q = < 8.5 up to 1.2 MeV/u, is now completed. The injector has been commissioned with O, Ar, Ne and Xe beams. Neon and argon beams have been delivered to experiments for a total of about 400 hours. A consolidation program of PIAVE and ALPI is planned, so as to deliver a larger variety of beams with a current range  pnA and with an energy exceeding the Coulomb barrier in relevant nuclear reaction cases. The RNB facility SPES, allowing a frontier program in RNB physics, is being designed and prototyped: beams of neutron rich medium-to-heavy mass nuclei will be produced inducing 238U fission with a 40 MeV 200μA proton beam impinging onto a multi-slice direct target. A further development of ALPI will make it best suitable for the re-acceleration of radioactive nuclear species, after charge breeding and isotope selection.  相似文献   

11.
Exotic, neutron-rich 111Mo and 115Ru nuclei, produced in proton-induced fission of 238U target, were separated with the IGISOL mass separator. The separator was coupled to the JYFLTRAP Penning trap to select the ions of a single, desired element out of the isobaric IGISOL beam. Monoisotopic samples of 115Ru and 111Mo ions were observed with a microchannel plate detector after the trap or were implanted on a catcher foil for gamma- and beta-ray coincidence spectroscopy. In spite of short data taking time new gamma transitions were identified in the beta decay of very neutron-rich 115Ru.  相似文献   

12.
The low-energy beam and ion trap facility LEBIT at the NSCL at MSU has demonstrated that rare isotopes produced by fast-beam fragmentation can be slowed down and prepared such that precision experiments with low-energy beams are possible. For this purpose high-pressure gas-stopping is employed combined with advanced ion manipulation techniques. Penning trap mass measurements on short-lived rare isotopes have been performed with a 9.4 T Penning trap mass spectrometer. Examples include 66As, which has a half-live of only 96 ms, and the super-allowed Fermi-emitter 38Ca, for which a mass accuracy of 8 ppb (280 eV) has been achieved. The high accuracy of this new mass value makes 38Ca a new candidate for the test of the conserved vector current hypothesis.   相似文献   

13.
Wu  XiaoBing  Ouyang  HuaFu  Chi  YunLong  He  Wei  Huang  Tao  Li  Gang  Liu  YingMan  Lu  YanHua  Xu  TaoGuang  Zhang  JunSong  Zhang  HuaShun  Zhao  FuXiang 《中国科学:物理学 力学 天文学(英文版)》2011,54(2):245-248

The accelerator complex of the China Spallation Neutron Source (CSNS) consists of a H linear accelerator (linac) and a rapid cycling synchrotron (RCS). The linac contains a Penning surface H ion source. The designed energy and the beam current of the source are 50 keV and 20 mA respectively, with a normalized root mean square (norm. rms.) emittance of 0.2π mm mrad. The manufactures and tests of the discharge chamber are in great progress. The construction of H ion source test stand has been completed, and the operation of the source is also in progress. Stable H ion beams with energy of 50 keV and current up to 50 mA are attained. Emittance measurement for the H beam is being prepared.

  相似文献   

14.
The Low-Energy Beam and Ion Trap facility LEBIT at the NSCL at MSU has demonstrated that rare isotopes produced by fast-beam fragmentation can be slowed down and prepared for precision experiments with low-energy beams. High-pressure gas-stopping was combined with advanced ion manipulation techniques to carry out these studies with a high-precision 9.4-Tesla Penning trap mass spectrometer. The spectrometer has been used for a series of high precision mass measurements of short-lived neutron- and proton-rich isotopes during the past year. This paper presents an overview of the LEBIT facility and summarizes the first mass measurement results. The mass measurements of 81Se, where ground and isomeric states have been resolved, and of 80As will be discussed in detail.  相似文献   

15.
Bertram Blank 《Pramana》2010,75(2):343-353
The DESIR Collaboration proposes the construction of an experimental facility to exploit the low-energy beams from SPIRAL1, SPIRAL2 and S3. The high degree of purity required to push experiments towards the limits of stability will be achieved by the implementation in the SPIRAL2 production building of a high-efficiency RFQ cooler coupled to a high-resolution mass separator. Beams from the low-energy branch of the separator spectrometer S3 and from SPIRAL1 will allow complementary studies of refractory elements produced by means of fusion reactions as well as of light and intense exotic beams, respectively.  相似文献   

16.
A 162.5 MHz four-vane radio frequency quadruple(RFQ) accelerator has been developed at the Institute of Modern Physics(IMP) for Injector II of the China ADS linac. The RFQ will operate in continuous wave mode at 100 k W. For the designed 10 mA beam, the additional RF power dissipation will induce a very large reflection of power. A water-temperature controlling system will be used to reduce the power reflection by tuning the frequency of the RFQ. The tuning capability of the water temperature is studied under different configurations of cooling water.Simulations and experiment are compared in this paper. The experimental results agree well with simulation using ANSYS. This can be used as a reference to tune the RFQ in beam commissioning.  相似文献   

17.
The GTS-LHC ion source,designed and build by CEA Grenoble,was installed and commissioned at CERN in 2005.Since than the source has delivered oxygen and lead ion beams(O~(4 ) and Pb~(27 ) from the source,Pb~(54 ) from the linac)for the commissioning of the Low Energy Ion Ring(LEIR).Results of this operation and attempts to improve the source performance and reliability,and the linac performance will be presented in this paper.  相似文献   

18.
A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of 238U . The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source.  相似文献   

19.
SHIPTRAP is an electromagnetic transport and trapping system to provide very clean and cold beams of singly-charged recoil ions from the SHIP facility at GSI. The different components of the system are currently under development in Munich (gas cell and extraction RFQ) and GSI (Buncher RFQ and Penning traps)[1]. Design and manufacturing of the prototype buffer gas cell and the extraction RFQ based on a wide range of simulations have been completed. The results of these simulations together with the first measurements will be reported. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We review the present and future of trap-assisted structure studies of odd, neutron-rich Tc, Ru, Rh and Pd isotopes at the limits of present experimental techniques. These nuclei of refractory elements are produced in light-particle induced fission and filtered by their mass number with the IGISOL mass separator. Further mass separation with the JYFLTRAP Penning trap system provides a clean, monoisotopic beam perfectly suited for precise nuclear spectroscopy. Connecting the IGISOL and the JYFLTRAP facilities to the recently installed MCC30/15 cyclotron opens new prospects for post-trap spectroscopy of very exotic, neutron-rich nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号