首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical Stark effect in semiconductor quantum wires   总被引:1,自引:0,他引:1  
Fanyao Qu  P. C. Morais   《Physics letters. A》2003,310(5-6):460-464
A new approach for controlling the optical emission wavelength of semiconductor quantum wires is proposed. The wavelength control resides upon the effect of an intense, long-wavelength laser field radiation applied to the semiconductor structure. Under such condition a strong optical Stark effect leads to optical tunability. Calculation of the optical Stark effect was carried out in the frame of the nonperturbative theory and finite difference method. Different geometries concerning the size of GaAs–AlGaAs quantum wires as well as the polarization direction and the strength of the applied laser field with respect to the quantum structure were considered.  相似文献   

2.
We study the electronic properties of a quantum system formed by two charged particles moving in a quantum wire (QW) with finite width σ and interacting through a Coulomb potential under an uniform electric field E applied over a spatially confined region of thickness 2a (-a<z<a). The number of electronic states of this finite width system is twice the number of the less realistic system with σ=0.  相似文献   

3.
Molecular-Beam Epitaxy growth of multiple In0.4Ga0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In0.4Ga0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In0.4Ga0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.  相似文献   

4.
With a brief introduction to one-dimensional channels and conductance quantization in mesoscopic systems, we discuss some recent experimental puzzles in these systems, which include reduction of quantized conductances and an interesting odd-even effect in the presence of an in-plane magnetic field. We then discuss a recent non-homogeneous Luttinger liquid model proposed by us, which addresses and gives an explanation for the reduced conductances and the odd-even effect. We end with a brief summary and discussion of future projects.  相似文献   

5.
While quantized conductance steps in short quantum wires are understood through a single electron picture, additional structure often observed in high-quality one-dimensional systems near g=0.7×(2e2/h) is commonly interpreted as arising due to many-body interactions. Most studies of conductance structure below 2e2/h use short one-dimensional wires where transport is known to be ballistic. We report transport measurements for both short (0.5 μm) and long (5 μm) quantum wires, and use both conductance and nonlinear transport to explore the behavior of one-dimensional wires.  相似文献   

6.
We consider theoretically the exchange coupling for independent heavy excitons in both weakly and strongly confining quantum wires. We discuss different contributions for the spin depolarization in the presence of spin-conserving scatterings and show that localization effects weaken the spin depolarization rate.  相似文献   

7.
Electron heating measurements have been carried out in etched quantum wires of various widths and in two-dimensional electron gases at low temperature in InGaAs quantum wells. The value of the temperature exponent of the energy loss rate, an indicator of the type of predominant energy loss scattering, is found to be n=3, indicative of piezoelectric scattering. At a lattice temperature <1 K, our wires show an exponential behavior expected for deviations from equipartition. Further departure is found at still lower temperatures to a width-dependent loss rate, which is thought to be due to many-body effects in the one-dimensional wires.  相似文献   

8.
We study the exciton states in a parabolic quantum wire. An exactly solvable model is introduced for calculating the exciton state and the binding energy as a function of the radius of the quantum wire within the envelope-function approximation. In the calculation, we replace the actual Coulomb interaction between the electron and the hole by a Gaussian nonlocal separable potential and obtain closed expressions for both the envelope-function and the binding energy. Results are compared with those obtained by perturbative methods.  相似文献   

9.
We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg1−xCdxTe and In1−xGax AsyP1−y lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula.  相似文献   

10.
We present a systematic study of the electron mobility in V-shaped AlGaAs/GaAs quantum wires taking into account the impurity (background, remote and interface) and the acoustic-phonon scattering. The electron scattering rates are calculated for wires with electron concentrations up to 106 cm−1 and temperatures up to 40 K by using Fermi’s golden rule. The effects of the interface roughness scattering and the alloy scattering are also discussed. The energy eigenstates and eigenvalues of the system under study are calculated using a finite difference method. We analyze the importance of each scattering mechanism on the mobility of several quantum wires of different qualities as a function of the electron concentration and the temperature.  相似文献   

11.
We report the observation of a strong Fermi-edge singularity (FES), with the complete suppression of the band-edge peak, in the photoluminescence spectra of ultra-high-quality modulation-doped AlGaAs/GaAs quantum wires (QWRs). We find that the FES effect is very sensitive to the Fermi energy. The strong FES is observed only in QWRs having a Fermi energy of the order of a few meV, and disappears almost completely when the Fermi energy exceeds 10 meV. These results are expected to spark new research activities, both experimentally and theoretically, on many-body effects in one-dimensional electron gas.  相似文献   

12.
The nonlinear electro-optic effects in quasi-one-dimensional semi-parabolic quantum wires are studied, in which the exciton effects are taken into account. The analytical expression of the electro-optic co-efficient is derived by compact density-matrix approach. Finally, the numerical results are presented for GaAs/AlGaAs semi-parabolic quantum wires. The results show that the electro-optic coefficient is over two times bigger than that obtained by without considering exciton effects. Furthermore, the electro-optic coefficient is related to the relaxation time.  相似文献   

13.
Magnetotransport properties of quasi-one-dimensional (quasi-1D) quantum wires based on InGaAs/InP heterojunctions were studied. The influence of the wire width as well as of the temperature on the weak antilocalization was investigated. A crossover from the weak antilocalization to the weak localization regime was observed in the very narrow wires. The analysis of the characteristic scattering lengths suggests a strong effect of the electron confinement and diffusive boundary scattering on the suppression of the weak antilocalization.  相似文献   

14.
The response of an electron to a three-dimensional electric field in an infinite quantum well wire of square cross-section is investigated within a variational scheme. The ionization energy and the polarization are calculated for different locations of impurity ion. It is found that the results for the spatial electric field differ from the previous results found for the electric field applied in the direction perpendicular to the wire axis. The ionization energy weakens rapidly with the axial component of the field as the polarization of the carrier distribution intensifies.  相似文献   

15.
16.
We have investigated the influence of vicinal GaAs substrates on the optical and electronic properties of InGaAs/GaAs quantum wells (QWs). A single In0.10Ga0.90As QW was grown by molecular-beam epitaxy on a vicinal GaAs(0 0 1) substrate with a miscut angle of 0° (nominal), 2°, 4° and 6° towards [1 1 0]. The carrier diffusion was obtained by a micro-photoluminescence scan technique that permits to observe the effective diffusion length characterized by the lateral spread of carriers in the QW followed by radiative recombination. The carrier diffusion length was obtained parallel (L||) and perpendicular (L) to the atomic steps. The diffusion length decreases as the temperature increases up to 100 K. Above this temperature we found different behaviours that depend on the sample miscut angle.  相似文献   

17.
Electron Raman scattering (ERS) is investigated in a free-standing semiconductor quantum wire of cylindrical geometry for two classes of materials CdS and GaAs. The differential cross section (DCS) involved in this process is calculated as a function of a scattering frequency and the radius of the cylinder. Electron states are considered to be confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are found and interpreted for various radii of the cylinder.  相似文献   

18.
We analyze the exciton states in a quantum wire under intense laser radiation. Electrons and holes are confined by the parabolic potential of the quantum wire. An exactly solvable model is introduced for calculating the exciton binding energy, replacing the actual Coulomb interaction between the electron and the hole by a projective operator.  相似文献   

19.
The response of an electron to an external electric field in different shapes of infinite quantum well wires has been investigated. The self-polarization effect which can be defined as the influence of the barrier potential on the impurity electron is studied for the quantum well wire of square, rectangular and cylindrical cross-sections. An external electric field vanishes due to the self-polarization effect has been calculated. It is shown that the self-polarization effect outside of the center depends on both the geometrical form of the wire and the impurity position in the same structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号