首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to subharmonic solutions as was the case in Govender (2005a) [Transport Porous Media 59(2), 227–238] for rectangular layers or cavities.  相似文献   

2.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogenous porous layer heated from below. The linear stability results are presented for both the synchronous and subharmonic solutions and the exact point for the transition from synchronous to subharmonic solutions is computed. It is also demonstrated that increasing the excitation frequency rapidly stabilizes the convection up to the transition point from synchronous to subharmonic convection. Beyond the transition point, the effect of increasing the frequency is to slowly destabilize the convection.  相似文献   

3.
We investigate the convection amplitude in an infinite porous layer subjected to a vibration body force that is collinear with the gravitational acceleration. The analysis shows that increasing the vibration frequency causes the convection amplitude to approach zero, i.e., increasing the vibration frequency stabilizes the convection.  相似文献   

4.
The linear stability of a viscoelastic fluid saturated densely packed horizontal porous layer heated from below and cooled from above is investigated by considering the Oldroyd-B type fluid. A generalized Darcy model, which takes into account the viscoelastic properties, is employed as momentum equation and a two-field model is used for energy equation each representing solid and fluid phases separately. Linear stability analysis suggests that, there is a competition between the processes of viscous relaxation and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. Analytical expression for the occurrence of oscillatory onset is obtained, and it is found that the necessary condition for the existence of the same is Λ < 1. Besides, the effect of viscoelastic parameters and the thermal non-equilibrium on the stability of the system is analyzed.  相似文献   

5.
The routes to chaos in a fluid saturated porous layer heated from below are investigated by using the weak nonlinear theory as well as Adomian's decomposition method to solve a system of ordinary differential equations which result from a truncated Galerkin representation of the governing equations. This representation is equivalent to the familiar Lorenz equations with different coefficients which correspond to the porous media convection. While the weak nonlinear method of solution provides significant insight to the problem, to its solution and corresponding bifurcations and other transitions, it is limited because of its local domain of validity, which in the present case is in the neighbourhood of any one of the two steady state convective solutions. On the other hand, the Adomian's decomposition method provides an analytical solution to the problem in terms of infinite power series. The practical need to evaluate numerical values from the infinite power series, the consequent series truncation, and the practical procedure to accomplish this task transform the otherwise analytical results into a computational solution achieved up to a finite accuracy. The transition from the steady solution to chaos is analysed by using both methods and their results are compared, showing a very good agreement in the neighbourhood of the convective steady solutions. The analysis explains previously obtained computational results for low Prandtl number convection in porous media suggesting a transition from steady convection to chaos via a Hopf bifurcation, represented by a solitary limit cycle at a sub-critical value of Rayleigh number. A simple explanation of the well known experimental phenomenon of Hysteresis in the transition from steady convection to chaos and backwards from chaos to steady state is provided in terms of the present analysis results.  相似文献   

6.
The linear stability theory is used to investigate analytically the possibility of the motionless basic state in a porous layer heated from above and subjected to vibration. The linear stability results presented for the specific case of low amplitude vibration shows that there exists a bandwidth of frequencies for which the convection in a porous layer with a stable density gradient can be destabilized. In addition the scaled Darcy–Prandtl number is shown to influence the onset of the subharmonic and synchronous solutions.  相似文献   

7.
The route to chaos for moderate Prandtl number gravity driven convection in porous media is analysed by using Adomian's decomposition method which provides an accurate analytical solution in terms of infinite power series. The practical need to evaluate numerical values from the infinite power series, the consequent series truncation, and the practical procedure to accomplish this task, transform the otherwise analytical results into a computational solution achieved up to a desired but finite accuracy. The solution shows a transition to chaos via a period doubling sequence of bifurcations at a Rayleigh number value far beyond the critical value associated with the loss of stability of the convection steady solution. This result is extremely distinct from the sequence of events leading to chaos in low Prandtl number convection in porous media, where a sudden transition from steady convection to chaos associated with an homoclinic explosion occurs in the neighbourhood of the critical Rayleigh number (unless mentioned otherwise by 'the critical Rayleigh number' we mean the value associated with the loss of stability of the convection steady solution). In the present case of moderate Prandtl number convection the homoclinic explosion leads to a transition from steady convection to a period-2 periodic solution in the neighbourhood of the critical Rayleigh number. This occurs at a slightly sub-critical value of Rayleigh number via a transition associated with a period-1 limit cycle which seem to belong to the sub-critical Hopf bifurcation around the point where the convection steady solution looses its stability. The different regimes are analysed and periodic windows within the chaotic regime are identified. The significance of including a time derivative term in Darcy's equation when wave phenomena are being investigated becomes evident from the results.  相似文献   

8.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogenous porous layer heated from below. The gravitational field consists of a constant part and a sinusoidally varying part, which is tantamount to a vertically oscillating porous layer subjected to constant gravity. The linear stability results are presented for the specific case of low amplitude vibration for which it is shown that increasing the frequency of vibration stabilises the convection.  相似文献   

9.
V. A. Demin 《Fluid Dynamics》2005,40(6):865-874
The stability of mechanical equilibrium of an inclined fluid layer with respect to three-dimensional perturbations under the action of high-frequency vibration is studied. It is shown that under heating from below the spiral perturbations are always the most dangerous for vibration transverse to the layer. For vertical vibration the stability limit is determined by three-dimensional perturbations whose shape depends in a complicated way on the angle of inclination of the layer and the vibrational Rayleigh number. In the limiting case of a thin vertical layer supercritical vibrational-convective motions are calculated numerically and analytically and scenarios of transition from quasi-equilibrium to irregular motions are studied.  相似文献   

10.
The linear stability theory is used to investigate analytically the effects of Coriolis acceleration on gravity driven convection in a rotating porous layer. The stability of a basic solution is analysed with respect to the onset of stationary convection. It was discovered that increasing the Taylor number caused degeneracy to polyhedric cells for a specific range of inclination angles. The effects of the magnitude of the horizontal wavenumber is discussed in relation to the magnitude of the Taylor number.  相似文献   

11.
It is well known that the onset of convection in an inclined porous layer heated from below takes the form of longitudinal vortices when Darcy’s law is valid. In this paper we consider briefly how the onset criterion alters when form drag, as modelled by the Forchheimer terms, is significant. In general, the critical Rayleigh number increases substantially as form drag effects strengthen, but the wavenumber rises by only a small amount. This numerical study is supplemented by a brief asymptotic analysis of the case when the Forchheimer terms dominate and it is shown that the critical Rayleigh number increases in direct proportion with the form drag parameter.  相似文献   

12.
The linear stability theory is used to investigate analytically the Coriolis effect on centrifugally driven convection in a rotating porous layer. The problem corresponding to a layer placed far away from the axis of rotation was identified as a distinct case and therefore justifying special attention. The stability of the basic centrifugally driven convection is analysed. The marginal stability criterion is established as a characteristic centrifugal Rayleigh number in terms of the wavenumber and the Taylor number.  相似文献   

13.
HARRIS  S. D.  INGHAM  D. B.  POP  I. 《Transport in Porous Media》1997,26(2):205-224
An analysis is made of the transient free convection from a vertical flat plate which is embedded in a fluid-saturated porous medium. It is assumed that for time a steady state temperature or velocity has been obtained in the boundary-layer which occurs due to a uniform flux dissipation rate . Then at time the heat flux on the plate is suddenly changed to and maintained at this value for 0$$ " align="middle" border="0"> . An analytical solution has been obtained for the temperature/velocity field for small times in which the transport effects are confined within an inner layer adjacent to the plate. These effects cause a new steady boundary layer. A numerical solution of the full boundary-layer equations is then obtained for the whole transient from to the steady state, firstly by means of a step-by-step method and then by a matching technique. The transition between the two distinct solution methods is always observed to occur very near to the turning point of the plate surface temperature, a time at which the fluid temperature is close to its steady state profile. The solution obtained using the step-by-step method shows excellent agreement with the small time analytical solution. Results are presented to illustrate the occurrence of transients from both small and large increases and decreases in the levels of existing energy inputs.  相似文献   

14.
We investigate natural convection in a fluid saturated rotating anisotropic porous layer subjected to centrifugal gravitational and Coriolis body forces. The Darcy model (including the centrifugal, gravitational and Coriolis terms; and permeability anisotropy effects) and a modified energy equation (including the effects of thermal anisotropy) is used in the current analysis. The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection in the presence of thermal and mechanical anisotropy. It is shown that the preferred solution comprises roll cells aligned parallel to the vertical z-axis. As a result, it is found that the Coriolis acceleration (or Taylor number) and the gravitational term play no role in the stability of convection.  相似文献   

15.
The effect of rotation speed modulation on the onset of centrifugally driven convection has been studied using linear stability analysis. Darcy flow model with zero-gravity is used to describe the flow. The perturbation method is applied to find the correction in the critical Rayleigh number. It is found that by applying modulation of proper frequency to the rotation speed, it is possible to delay or advance the onset of centrifugal convection.  相似文献   

16.
The onset of thermal convection in an isothermally heated, horizontal porous layer saturated with viscoelastic liquid was analyzed analytically under the linear theory. An existing constitutive model, which is rather simple, was employed to examine the effects of relaxation times. It is shown clearly that oscillatory instabilities can set in before stationary modes are exhibited. The peculiar behavior of the frequency at the critical state was discussed in connection to polymeric liquids.  相似文献   

17.
蜂窝锥壳卫星适配器约束阻尼层振动抑制分析   总被引:5,自引:3,他引:5  
主要研究在蜂窝锥壳卫星适配器上附加约束阻尼来抑制锥壳传递振动。尽管约束阻尼方面的研究很多,但是大多数都是针对简单的梁或者板结构,而对复杂蜂窝锥壳结构的振动抑制问题研究还很少;为此,通过对蜂窝壳的等效化处理和约束阻尼结构的有限元建模理论分析,建立起卫星一适配器结构在有无附加约束阻尼情况下的有限元模型,进一步通过模态分析和频响分析,得到不同约束阻尼层设计参数对结构振动抑制影响规律。分析结果对于经济有效的设计约束阻尼层和结构减振减重具有较好的参考价值。  相似文献   

18.
The effect of thermal expansion on porous media convection is investigated by isolating first the solution of thermal expansion in the absence of convection which allows to evaluate the leading order effects that need to be included in the convection problem that is solved later. A relaxation of the Boussinesq approximation is applied and the relevant time scales for the formulated problem are identified from the equations as well as from the derived analytical solutions. Particular attention is paid to the problem of waves propagation in porous media and a significant conceptual difference between the isothermal compression problem in flows in porous media and its non-isothermal counterpart is established. The contrast between these two distinct problems, in terms of the different time scales involved, is evident from the results. While the thermal expansion is identified as a transient phenomenon, its impact on the post-transient solutions is found to be sensitive to the symmetry of the particular temperature initial conditions that are applied.  相似文献   

19.
The impact of thermal expansion and the corresponding non-Boussinesq effects on porous media convection are considered. The results show that the non-Boussinesq effects decouple from the rest, and solving the Boussinesq system separately is needed even when non-Boussinesq effects are being investigated. The thermal expansion is shown to have a lasting impact on the post-transient convection only for values of Rayleigh number substantially beyond the convection threshold, where the amplitude of convection is not small. In the neighbourhood of the convection threshold the thermal expansion has only a transient impact on the solution. It is also evident from the results that the neglect of the time derivative term in the extended Darcy equation might introduce a significant error when oscillatory effects are present.  相似文献   

20.
The onset of convection in a system of two horizontal layers (a pure liquid and a porous medium saturated with the same liquid) heated from below under the action of vertical vibration is investigated. For describing the free thermal convection, in the liquid layer the Boussinesq approximation and in the porous layer the Darcy-Boussinesq approximation are used. In the limiting case of a thin liquid layer, effective boundary conditions on the upper boundary of the porous layer with account for convection in the liquid layer are obtained and it is shown that vibration has a stabilizing effect, whereas the presence of a liquid layer leads to destabilization. For an arbitrary liquid to porous layer thickness ratio the onset of convection is investigated numerically. In the case of a thin liquid layer there are two (short-and long-wave) unstable modes. In the case of thick layers the neutral curves are unimodal. Vibration has a stabilizing effect on perturbations with any wave number but affects short-wave perturbations much more strongly than long-wave ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号