首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent experiments by T.C. Killian et al. [Phys. Rev. Lett. 83, 4776 (1999)], in which an ultracold plasma (N e~2×109 cm?3, T e~0.1K, and T i~10 μK) with anomalously long lifetime of ~100 μs was obtained, are explained based on a previously developed theory. The results of computer simulations of the plasma transition into a metastable state and initial heating of electrons up to several K are presented. An expression earlier obtained for the rate of the metastable plasma recombination agrees with the measured anomalously long lifetime. A conclusion is drawn that the previously predicted new physical object—a metastable overcooled plasma—is realized experimentally.  相似文献   

2.
It is established experimentally that the burning of a low-current (several and tens of amperes) pulsed (microseconds) vacuum discharge is accompanied by the formation of plasma microbunches around some of the droplets leaving the cathode spot. The parameters of these bunches (electron concentration n e~1026 m?3 and equilibrium temperature T e~1 eV) are close to the parameters of cathode-spot plasma. The data obtained suggest that the initial temperature of droplets and the thermionic emission from them play a key role in the formation of such plasma microbunches. By analogy with the well-known cathode and anode spots in vacuum discharges, these droplet plasma formations are classified as “droplet spots.” This work reports the first results on studying the formation dynamics and the characteristics of the droplet spots. It is noted that the concept of droplet spots will require a certain refinement of the plasma formation mechanism in vacuum discharges.  相似文献   

3.
Results of studying the temperature dependence of the residual polarization of negative muons in crystalline silicon with germanium (9×10 19 cm ?3 ) and boron (4.1×10 18 , 1.34×10 19 , and 4.9×10 19 cm ?3 ) impurities are presented. It is found that, similarly to n-and p-type silicon samples with impurity concentrations up to ~10 17 cm ?3 , the relaxation rate ν of the magnetic moment of a μ Al acceptor in silicon with a high impurity concentration of germanium (9×10 19 cm ?3 ) depends on temperature as ν~T q , q≈3 at T=(5–30) K. An increase in the absolute value of the relaxation rate and a weakening of its temperature dependence are observed in samples of degenerate silicon in the given temperature range. Based on the experimental data obtained, the conclusion is made that the spin-exchange scattering of free charge carriers makes a significant contribution to the magnetic moment relaxation of a shallow acceptor center in degenerate silicon at T?30 K. Estimates are obtained for the effective cross section of the spin-exchange scattering of holes (σ h ) and electrons (σ e ) from an Al acceptor center in Si: σ h ~10?13 cm2 and σ e ~8×10?15 cm2 at the acceptor (donor) impurity concentration n a (n d )~4×1018 cm?3.  相似文献   

4.
We report the first observations of optically induced electron spin resonance signals in doped and undoped amorphous silicon. We also report the observation of equilibrium surface or interface spin densities ~ 1013cm?2 and volume spin densities ~ 6 × 1015 cm?3. The small number of spins observed in equilibrium compared to the large optically induced spin density shows that most electrons are spin paired in equilibrium. We conclude that this implies a very small mean effective correlation energy, UkT.  相似文献   

5.
X-ray spectroscopic diagnostics of laser-cluster interaction at the stage of nonadiabatic scattering of clusters and formation of a spatially uniform plasma channel has been performed. The experimental investigations have been carried out on a Ti:Sa laser setup with a pulse duration of about 65 fs and an energy up to 600 mJ. It has been shown that, within 10 ps from the beginning of a laser femtosecond pulse, the laser-cluster interaction forms a uniform plasma channel with a length of 0.4 to 1 mm with the parameters N e ~ 1019?1020 cm?3 and T e ~ 100 eV.  相似文献   

6.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

7.
A theory of a low-pressure discharge in a xenon-molecular hydrogen mixture is developed. It is shown that, in such a discharge, at an interelectrode distance of L = 1 cm and a total plasma pressure of p 0 ~ 1 Torr, the density of negative hydrogen ions produced via the dissociative attachment of thermal electrons to vibrationally excited molecules H2 can reach a value as high as NH ? ≥ 1012 cm?3. According to calculations, the electron temperature in discharge operating regimes under study attains T e ≈ 1?2 eV, which corresponds to the maximum of the e-v exchange rate constant of H2 molecules. This ensures a relatively high rate of vibrational pumping of H2 molecules in the discharge.  相似文献   

8.
A pseudopotential model is suggested to describe the thermodynamics and correlation functions of an ultracold, strongly nonideal Rydberg plasma. The Monte Carlo method is used to determine the energy, pressure, and correlation functions in the ranges of temperatures T=0.1–10 K and densities n=10?2–1016 cm?3. For a weakly nonideal plasma, the results closely agree with the Debye asymptotic behavior. For a strongly nonideal plasma, many-particle clusters and a spatial order in the arrangement of plasma electrons and ions have been found to be formed.  相似文献   

9.
Extremely strong accumulation layers with surface electron densities ΔN approaching 1014 cm?1 have been achieved on ZnO surfaces in contact with an electrolyte. Quantization effects, which are very pronounced in such narrow (?10 Å) layers, are studied by measurements of ΔN versus surface barrier height Vs. Comparison of the results with self-consistent calculations shows very good agreement up to ΔN = 2 × 1013 cm?2. Deviations observed at higher ΔN are probably associated with the huge electric fields (~107 V/cm) experienced by the surface electrons.  相似文献   

10.
A refined model of processes taking place in electrostatic extractors is proposed. The model is based on the analysis of the present-day state of theoretical studies in this field and takes into account both the Langmuir and Bohm mechanisms of ion transport, calculations of initial profile of ionic current to the cathode, and the integrated contribution of ionic current to the anode. The Bohm mechanism is shown to make the dominant contribution to ion extraction for typical values of initial ionic densityn i 0 ≥1010 cm?3. Under these conditions, this mechanism not only causes a considerable (by more than an order of magnitude) decrease in plasma relaxation time τ R in comparison with the values determined by the usual Langmuir mechanism, but also substantially modifies the main structural dependences of the relaxation time, which are found to be now in good agreement with the experimental power dependences. The new results obtained in the work favor the view that electrostatic (nonmagnetic) ion extraction systems provide a rather high efficiency at an increased (n i 0 ~1011 cm?3) plasma density and, correspondingly, at a high power density.  相似文献   

11.
The thermodynamic properties of a highly compressed deuterium plasma have been measured using an explosive spherical experimental chamber. The experiment has been performed with an X-ray diffraction complex consisting of three betatrons and a multichannel optoelectronic system of the detection of X-ray images of the process of the explosive spherical compression of deuterium. The density of the shock-compressed deuterium plasma ρ = (4.3 ± 0.7) g/cm3 at the pressure P = 1830 GPa has been detected at the initial pressure of gaseous deuterium P 0 = 267 atm and the temperature T 0 = 10.5°C. Under such conditions, the plasma is strongly nonideal (Γ ~ 450) with the degenerate (nλ e 3 ~ 280) electron component and with an electron density of about 2.8 × 1023 cm?3.  相似文献   

12.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

13.
This paper reports on the results of an investigation into the effect of irradiation of the Bardeen-Cooper-Schriefer superconductor MgB2 by electrons with a mean energy ē ~ 10 MeV at low doses (0 ≤ Φt ≤ ~5 × 1016 cm?2) on the lattice parameters, the intensity and width of diffraction lines, the superconducting transition temperature T c , and the temperature dependence of the resistivity ρ(T) in the normal state. The results of structural investigations have revealed regularities in the defect formation in the magnesium and boron sublattices of the MgB2 compound as a function of the electron fluence. At the initial stage, irradiation leads to the formation of vacancies, originally in the magnesium sublattice and then in the boron sublattice. For fluences Φt ≥ ~1 × 1016 cm?2, vacancies are formed in both sublattices. The evolution of the electrical and physical properties [T c , ρ273 K, residual resistivity ratio RRR = ρ273 K50 K, parameters of the dependence ρ(T)] under electron irradiation is in agreement with the regularities revealed in the formation of radiation-induced defects in the crystal lattice of the MgB2 compound.  相似文献   

14.
Bulk samples of oriented carbon nanotubes were prepared by electric arc evaporation of graphite in a helium environment. The temperature dependence of the conductivity σ(T), as well as the temperature and field dependences of the magnetic susceptibility χ(T, B) and magnetoresistance ρ(B, T), was measured for both the pristine and brominated samples. The pristine samples exhibit an anisotropy in the conductivity σ(T)/σ>50, which disappears in the brominated samples. The χ(T, B) data were used to estimate the carrier concentration n 0 in the samples: n 0ini ~3×1010 cm?2 for the pristine sample, and n 0Br~1011 cm\t—2 for the brominated sample. Estimation of the total carrier concentration n=n e+n p from the data on ρ(B, T) yields n ini=4×1017 cm?3 (or 1.3×1010 cm?2) and n Br=2×1018 cm?3 (or 6.7×1010 cm?2). These estimates are in good agreement with one another and indicate an approximately fourfold increase in carrier concentration in samples after bromination.  相似文献   

15.
The temperature dependence of a zero-bias anomaly in the tunneling conductance of an Al/δ-GaAs tunneling structure with a two-dimensional electron density in the δ-layer of 3.5 × 1012 cm?2 has been investigated. It has been shown that the respective drop Δρ(?, T) in the tunneling density of states ρ near the Fermi level E F of the two-dimensional electron system depends logarithmically on the energy ? within the range of 2.7kT < |?| < ?/τ, where ? is measured with respect to E F and τ is the momentum relaxation time of two-dimensional electrons. It has been found that the drop depth Δρ(0, T)/ρ is also proportional to ln(kT/?0) in the temperature range T = 0.1–20 K and saturates below 0.1 K.  相似文献   

16.
The temperature dependence of the spin-lattice relaxation time T1 in rhombohedral arsenic has been measured by nuclear quadrupole resonance. The relaxation time is inversely proportional to the temperature and of a magnitude which indicates that the relaxation results from the Fermi contact interaction of the conduction electrons and holes and the arsenic nuclei. The density of electrons and holes at the site of the nucleus, averaged over the Fermi surface is approximately 2.6 × 1021 carriers cm?3.  相似文献   

17.
The diffusion constants for C and O adsorbates on Pt(111) surfaces have been calculated with Monte-Carlo/Molecular Dynamics techniques. The diffusion constants are determined to be DC(T)=(3.4 × 10?3e?13156T)cm2s?1 for carbon and DO(T) = (1.5×10?3 e?9089T) cm2 s?1 for oxygen. Using a recently developed diffusion model for surface recombination kinetics an approximate upper bound to the recombination rate constant of C and O on Pt(111) to produce CO(g) is found to be (9.4×10?3 e?9089T) cm2 s?1.  相似文献   

18.
The cause of the small heating of ultracold neutrons (UCNs) by ~10?7 eV with a probability of 10?8–10?5 per collision with a surface was investigated. Neutrons heated in this way will be called vaporized UCNs (VUCNs). It was established that a preliminary heating of a sample in vacuum up to a temperature of 500–600 K can increase small-heating probability P VUCN by a factor of at least ~100 and 10 on a stainless steel and a copper surface, respectively. For the first time, an extremely vigorous small heating of UCNs was observed on a powder of diamond nanoparticles. In this case, both the VUCN spectrum and the temperature dependence of probability P VUCN were similar to those previously obtained for stainless steel, beryllium, and copper samples. On the surface of single crystal sapphire, neither the small heating of UCNs nor nanoparticles were found. All these facts indicate that VUCNs are likely produced by inelastic scattering of UCNs on weakly bound surface nanoparticles being in permanent thermal motion.  相似文献   

19.
Amorphous arsenic prepared by plasma decomposition of arsine has been characterized using field-effect conductance, thermopower, optical absorption, and photoconductivity measurements. It is found that the Fermi level is located in a density of states ~ 1017 cm?3 eV?1 approximately in the center of the forbidden gap, that conduction occurs via electrons in extended states in the conduction band, and that the optical and photoelectrical properties are very similar to those of bulk a-As. It is concluded that a model involving a negative correlation energy for localized states is inappropriate for this material.  相似文献   

20.
The plasma line broadening of Hα fine-structure lines is investigated with Doppler-free saturation and polarization spectroscopy in He-H gas and are discharges at plasma densities of 108 cm?3 <N?1.4×1014 cm?3. With a single-mode laser, the shift and broadening of four resolved Hα fs lines are measured in a low pressure discharge forN<1011 cm?3. With an intense, broadband multi-mode laser the plasma effects of Hα are investigated up toN=1.4×1014 cm?3 in a hollow cathode are. Calculations in the classical phase shift and impact approximations can explain the experimental data and peculiarities of the low-density plasma effects and show that the ions are the dominant perturbers. Ion dynamical effects, perturber mass and temperature dependence, are observed and interpreted. Applications of the nonlinear techniques to other H and D lines, other atoms, and for H and D plasma diagnostics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号