首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed oxides Ce(1-x)Zr(x)O(2) prepared by slow coprecipitation in NaOH were tested for NO(2) adsorption in dynamic conditions at room temperature. The samples were characterized before and after exposure to NO(2) by XRD, N(2)-adsorption, thermal analysis, potentiometric titration, and FT-IR. Mixed oxides show a better NO(2) adsorption capacity than the parent materials (CeO(2) and Zr(OH)(4)). This effect is linked to the presence of reduced cerium and oxygen vacancies induced by the addition of Zr(4+) cations to the structure. The results indicate that NO(2) reacts with Ce(3+) to form nitrite and nitrate species on the surface. The NO retention increases with an increase in the Zr(OH)(4) content. A decrease in the density of -OH groups on the surface after the exposure to NO(2), suggests their involvement in reactive adsorption of NO and/or NO(2). From the structural point of view, no real difference was observed on the Ce(1-x)Zr(x)O(2) materials before and after exposure to NO(2).  相似文献   

2.
Titanium oxides of different surface areas were sulfated then calcined to convert the solid to a strong acid. The amount of sulfur retained by the solid and the thermal stability of the resulting sulfate are controlled by the dispersion of the initial oxide. The acid properties were determined by gravimetry at 383 K, calorimetry using ammonia adsorption at 353 K, and by quantitative analysis of the infrared spectra of pyridine retained after evacuation at 423 K. A good agreement was observed between the different determinations. At low coverage of ammonia, sulfated titanias show a much lower heat of adsorption, and the IR study of NH3 adsorption shows that the first doses of NH3 dissociate at the surface with the formation of OH species. The lower heat of adsorption is then attributed to the contribution of NH3 dissociation to the differential heat of adsorption. IR spectroscopy indicates that NH3 reacts with sulfates and may lead to the transformation of disulfate species into monosulfate species on sulfated titania dioxide. A band at ca. 3574 cm-1 has been assigned to nu(OH) of monosulfate species. This particular behavior makes it difficult to appreciate the initial acidity of these sulfated oxides.  相似文献   

3.
Ammonia adsorption and desorption behavior of surface treated active carbon (AC) and ion-exchanged Y zeolite, as ammonia separation and storage materials for a new de-NOx process with ammonia on-site synthesis, were studied. Surface oxidized AC adsorbed more ammonia than non-treated AC due to ammonium ion formation. These materials were found to increase weak adsorption of ammonia and to be useful for pressure swing adsorption. Transition metal ion exchanged Y-zeolite adsorbed more ammonia (both weak and strong form) than Na Y-zeolite due to ammine complex formation. These materials adsorb and desorb more ammonia than treated AC when used for temperature swing adsorption.  相似文献   

4.
A first principles theory combined with a continuum electrolyte theory is applied to adsorption of sulfuric acid anions on Pt(111) in 0.1 M H(2)SO(4) solution. The theoretical free energy diagram indicates that sulfuric acid anions adsorb as bisulfate in the potential range of 0.41 < U ≤ 0.48 V (RHE) and as sulfate in 0.48 V (RHE) < U. This diagram also indicates that sulfate inhibits formations of surface oxide and hydroxide. Charge analysis shows that the total charge transferred for the formation of the full coverage sulfate adlayer is 90 μC cm(-2), and that the electrosorption valency value is -0.45 to -0.95 in 0.41 < U ≤ 0.48 V (RHE) and -1.75 to -1.85 in U > 0.48 V (RHE) in good agreement with experiments reported in the literature. Vibration analysis indicates that the vibration frequencies observed experimentally at 1250 and 950 cm(-1) can be assigned, respectively, to the S-O (uncoordinated) and symmetric S-O stretching modes for sulfate, and that the higher frequency mode has a larger potential-dependence (58 cm(-1) V(-1)) than the lower one.  相似文献   

5.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

6.
The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.  相似文献   

7.
The structures of positively and negatively charged clusters of sulfuric acid with ammonia and/or dimethylamine ((CH(3))(2)NH or DMA) are investigated using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Positively charged clusters of the formula [(NH(4)(+))(x)(HSO(4)(-))(y)](+), where x = y + 1, are studied for 1 ≤ y ≤ 10. These clusters exhibit strong cation-anion interactions, with no contribution to the hydrogen-bonding network from the bisulfate ion protons. A similar hydrogen-bonding network is found for the [(DMAH(+))(5)(HSO(4)(-))(4)](-) cluster. Negatively charged clusters derived from the reaction of DMA with [(H(2)SO(4))(3)(NH(4)(+))(HSO(4)(-))(2)](-) are also studied, up to the fully reacted cluster [(DMAH(+))(4)(HSO(4)(-))(5)](-). These clusters exhibit anion-anion and ion-molecule interactions in addition to cation-anion interactions. While the hydrogen-bonding network is extensive for both positively and negatively charged clusters, the binding energies of ions and molecules in these clusters are determined mostly by electrostatic interactions. The thermodynamics of amine substitution is explored and compared to experimental thermodynamic and kinetic data. Ammonia binds more strongly than DMA to sulfuric acid due to its greater participation in hydrogen bonding and its ability to form a more compact structure that increases electrostatic attraction between oppositely charged ions. However, the greater gas-phase basicity of DMA is sufficient to overcome the stronger binding of ammonia, making substitution of DMA for ammonia thermodynamically favorable. For small clusters of both polarities, substitutions of surface ammonium ions are facile. As the cluster size increases, an ammonium ion becomes encapsulated in the center of the cluster, making it inaccessible to substitution.  相似文献   

8.
New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.  相似文献   

9.
The adsorption qualities of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+), a polycation with ε-Keggin structure, and its stability in contact with anionic cellulosic materials, was investigated under different concentration and ionic strength conditions. The cellulosic materials employed were two different fully bleached fibre materials, carboxyl methyl cellulose (CMC), and a spin-coated cellulose model surface. As analytical techniques, pH-measurements, potentiometric titrations, ICP-OES, QCM-D, equilibrium calculations and Extended X-ray Absorption Fine Structure (EXAFS) were used. The adsorption is substantial and the addition of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) to a fibre suspension results in a rapid decrease in pH, followed by a small and slow increase in pH. This behaviour can be explained as due to a rapid and strong (log β>2) equilibrium adsorption of intact GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) ions, followed by a slow, and minor, 3-8%, decomposition into different monomers. Alternative layer by layer adsorption of this ion, and CMC, on a spin-coated cellulose model surface constitutes further evidence for the strong interactions between the anionic cellulose materials and GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+). It is shown that the adsorption observed could not be described as due to an unspecific Donnan adsorption behaviour, neither of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) nor Ga and Al monomers, and specific surface complex formation is therefore discussed and applied. The (≡COO)(7)GaO(4)Al(12)(OH)(24)(H(2)O)(12) species found to explain the pH- and metal adsorption data should be considered strictly as a stoichiometric entity.  相似文献   

10.
LiNi_(0.915)Co_(0.075)Al_(0.01)O_2(NCA) with Zr(OH)_4 coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)_4 powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)_4 powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)_4 coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)_4 is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs.  相似文献   

11.
Kinetics and mechanism of nitrate and nitrite reduction on Pt(100) electrode modified by Cu adatoms have been studied in solutions of sulfuric and perchloric acids by means of cyclic voltammetry and in situ IR-spectroscopy. It has been shown that the surface redox process with participation of ammonia or hydroxylamine at 0.5–0.9 V occurs only on the Cu-free platinum. The causes of this effect could be low adsorption energy of nitrate reduction products on copper or changes in the composition of the products (ammonia for Pt(100) and N2O for Pt(100)+Cu). Nitrate reduction on Pt(100)+Cu electrode is much faster in the perchloric acid solution (by several orders of magnitude) as compared with unmodified platinum as a result of induced adsorption of nitrate anions in the presence of partly charged Cu atoms. In the solutions of sulfuric acid the rate of nitrate reduction is considerably lower as copper adatoms facilitate adsorption of sulfate anions, which block the adsorption sites for the nitrate.  相似文献   

12.
Hydrotalcite-like compounds (layered double hydroxides, LDHs) containing varying amounts of Al(3+), Zr(4+), and Zn(2+) or Mg(2+) in the metal hydroxide layer have been synthesized and characterized by various physicochemical methods. The adsorption behavior of uncalcined (as-synthesized) and calcined LDHs have been investigated for Cr(2)O(7)(2-) and SeO(3)(2-). The mixed oxides, obtained on calcination at 450 degrees C, exhibit high adsorption capacities for Cr(2)O(7)(2-) (1.6-2.7 meq/g) and SeO(3)(2-) (1.1-1.5 meq/g), where adsorption occurs through rehydration. Substitution of Zr(4+) in the LDHs, for either M(2+) or Al(3+) ions, increases the adsorption capacity up to 20%, thus providing an alternative way to enhance the adsorption capacity of this type of material. The high adsorption capacity of these materials could be successfully used for removal of undesirable anions from water and also for synthesis of intercalated materials with tailored acidobasicity.  相似文献   

13.
In our study, we show by solid-state (15)N NMR measurements that an important zirconium metal-organic framework (UiO-66) with amino-functionalized links is composed of a mixture of amino and -NH(3)(+)Cl(-) salt functionalities rather than all amino functionality to give a composition of Zr(6)O(4)(OH)(4)(BDC-NH(2))(4)(BDC-NH(3)(+)Cl(-))(2) (UiO-66-A). UiO-66-A was postsynthetically modified to form a mixture of three functionalities, where the hemiaminal functionality is the majority species in UiO-66-B and aziridine is the majority functionality in UiO-66-C. UiO-66-A-C are all porous with surface areas ranging from 780 to 820 m(2)/g and have chemical stability, as evidenced by reversible ammonia uptake and release showing capacities ranging from 134 to 193 cm(3)/g.  相似文献   

14.
ONIOM(DFT:PM3) calculations were carried out to investigate and characterize possible acid sites of SAPO‐11 molecular sieve. Two functionals were employed: B3LYP and ωB97X‐D. This last functional includes dispersion effects that are absent in the former. Benzene, pyridine, and ammonia interaction energies as well as the OH stretching frequencies of the POH, SiOH, and bridged Si(OH)Al groups were used to characterize the acid sites. This work shows that the adsorption of benzene on the surface is as strong as the adsorptions inside main channel of SAPO‐11. Pyridine adsorption on the surface is weaker than the one corresponding to the main channel. NH3 molecule interacts strongly with all OH groups or acid sites present in SAPO‐11. Moreover, the results reveal that it is possible to adsorb two NH3 molecules at only one Brønsted site. The adsorption of the second NH3 molecule is energetically favorable mainly due to the hydrogen bond formation between the NH3 molecules. In general the interaction energy increases with the type of functional used, according to the trend ωB97X‐D > B3LYP. The results show that ONIOM methodology seems to be suited to investigate the acid sites in SAPO‐11.  相似文献   

15.
Highly dispersed zirconium phosphate was prepared by reacting Cel/ZrO(2) (ZrO(2)=6.7 wt%; 0.56 mmol g(-1) of zirconium atom per gram of the material) with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS)(31)P NMR and X-ray photoelectron spectroscopy data indicated that HPO(2-)(4) is the species present on the fiber surface. The X-ray diffraction patterns showed that zirconium hydrogen phosphate particles were amorphous and had an ion-exchange capacity, determined by ammonia gas adsorption, of 0.30 mmol g(-1). The ion-exchange capacities for Li(+), Na(+), and K(+) ions were determined from ion-exchange isotherms at 298 K and showed the following values (in mmol g(-1)): Li(+)=0.01, Na(+)=0.23, and K(+)=0.30. The higher affinity of the surface hydrogen phosphate particles for Na(+) and K(+) is due to its lamelar structure which permits easier diffusion of these two ions whose hydrated radii are smaller than that of Li(+).  相似文献   

16.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

17.
Ammonium-ion-exchanged alpha-Zr(HPO(4))(2)H(2)O (alpha-ZrP) was obtained as a single phase with the interlayer distance of 9.4 A by the ion-exchange of proton with ammonium ion. The ammonium ion-exchanged alpha-ZrP could adsorb ill-smelling gases, such as formaldehyde and carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid). The adsorption amounts of carboxylic acids increased in the order, butyric acid相似文献   

18.
Hayashita T  Takagi M 《Talanta》1985,32(5):399-405
Various metal thiocyanate complexes in aqueous solution were sorbed on solid cellulose acetate polymers. The sorption selectivity increased in the order Zn(2+) > Fe(3+) > Cu(2+) > Co(2+) > Ni(2+). The sorption behaviour followed a Langmuir-type adsorption isotherm, and the maximum adsorption capacity was 6.1 x 10(-5) mole of complex per g of polymer under optimum conditions. The zinc species sorbed appear to be NH(4)Zn(H(2)O)(SCN)(3) or (NH(4))(2)Zn(SCN)(4) according to analysis of the sorption equilibrium. The ion-association species formed by the complex zinc anion and the ammonium ion was supposed to be sorbed (or "extracted") onto the polymer matrix. As an application of sorption of metal complexes, a new hyperfiltration process was proposed for selective separation of metal ions. Thus, a mixture of metal thiocyanate complexes was hyperfiltered through cellulose acetate membranes. Permeation of certain metal complexes was preferred, and the selectivity was found to be similar to the sorption selectivity. These findings lead to a generalized idea that hyperfiltration separation of ionic species, particularly anionic metal complexes, can be attained by using polymer membranes which selectively adsorb or extract such ionic species as ion-association complexes onto the polymer matrix.  相似文献   

19.
Summary Thermal decomposition of nanosize ammonium sulfate obtained as a by-product in a new electron-beam technology cleaning up waste gases from thermal power stations was studied. DTA-TG-DTG curves were used to characterize thermal properties of the new products obtained under different technological conditions. High quality of ammonium sulfate from Merck was used as a reference material. Ammonium sulfate was the main component in all the products and their thermal behavior was similar to that of the reference. Only the solid product obtained with the highest norm of ammonia contained about 3.2% ammonium nitrate. Thermoanalytical methods can successfully be applied for control the quality of the by-products from E-beam desulfurization technology. It was found that the thermal stability of the nanosize ammonium sulfate was the same as that of the reference ammonium sulfate.  相似文献   

20.
Composite diffusion coeffcients have been measured for the various species labeled with35S which are present in a number of aqueous solutions due to the introduction of the labeled material as35SO 4 2– . The solutions were of two components consisting of water and either sodium sulfate. The diffusion coeffcient measured for sodium chloride solutions is similar to literature data for the corresponding diffusion in sodium sulfate solutions. The results for sulfuric acid and ammonium hydrogen sulfate have been interpreted using literature data for the relative concentrations of the hydrogen sulfate and sulfate ions to obtain estimates for the diffusion coefficents of those ions. The results for perchloric acid, regarded as representing the diffusion coefficient of the hydrogen sulfate ion, have a much different concentration dependence to that observed for the estimates for that ion in sulfuric acid and ammonuim hydrogen sulfate. The difference is attributed to the effect of the perchlorate ion on the water structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号