首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Thick conductive layers containing anthraquinone moieties are covalently immobilized on gold using redox grafting of the diazonium salt of anthraquinone (i.e., 9,10-dioxo-9,10-dihydroanthracene-1-diazonium tetrafluoroborate). This grafting procedure is based on using consecutive voltammetric sweeping and through this exploiting fast electron transfer reactions that are mediated by the anthraquinone redox moieties in the film. The fast film growth, which is followed by infrared reflection absorption spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, ellipsometry, and coverage calculation, results in a mushroom-like structure. In addition to varying the number of sweeps, layer thickness control can easily be exerted through appropriate choice of the switching potential and sweep rate. It is shown that the grafting of the diazonium salt is essentially a diffusion-controlled process but also that desorption of physisorbed material during the sweeping process is essentially for avoiding blocking of the film due to clogging of the electrolyte channels in the film. In general, sweep rates higher than 0.5 V s(-1) are required if thick, porous, and conducting films should be formed.  相似文献   

2.
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.  相似文献   

3.
Layer-by-layer films were assembled on solid substrates by alternate adsorption of negatively charged ionomer poly(ester sulfonic acid) or Eastman AQ55 from its aqueous dispersion and positively charged myoglobin (Mb) from its solution at pH 4.5. The film assembly process was monitored by cyclic voltammetry (CV), UV-vis spectroscopy, and quartz crystal microbalance (QCM). [AQ/Mb](n) films grown on pyrolytic graphite (PG) electrodes showed a pair of well-defined and nearly reversible CV peaks at about -0.20 V vs Ag/AgCl in pH 5.5 buffers, characteristic of the Mb heme Fe(III)/Fe(II) redox couple. Although the amount of Mb adsorbed in each bilayer was essentially the same, the fraction of electroactive Mb decreased dramatically with an increase of bilayer number (n). Soret absorption bands of [AQ/Mb](n) films on glass slides suggest that Mb in the films retains its native state in the medium pH range. Trichloroacetic acid, oxygen, and hydrogen peroxide were electrochemically catalyzed by [AQ/Mb](6) films with significant lowering of reduction overpotential.  相似文献   

4.
《Electroanalysis》2004,16(23):1931-1937
Calf thymus DNA was immobilized on functionalized glassy carbon, gold and quartz substrates, respectively, by the layer‐by‐layer (LBL) assembly method with a polycation QPVP‐Os, a quaternized poly(4‐vinylpyridine) partially complexed with osmium bis(2,2′‐bipyridine) as counterions. UV‐visible absorption and surface plasmon resonance spectroscopy (SPR) showed that the resulting film was uniform with the average thickness 3.4 nm for one bilayer. Cyclic voltammetry (CV) showed that the total surface coverage of the polycations increases as each QPVP‐Os/DNA bilayer added to the electrode surface, but the surface formal potential of Os‐centered redox reaction shifts negatively, which is mainly attributed to the intercalation of redox‐active complex to DNA chain. The electron transfer kinetics of electroactive QPVP‐Os in the multilayer film was investigated by electrochemical impedance experiment for the first time. The permeability of Fe(CN) in the solution into the multilayer film depends on the number of bilayers in the film. It is worth noting that when the multilayer film is up to 4 bilayers, the CV curves of the multilayer films display the typical characteristic of a microelectrode array. The nanoporous structure of the multilayer film was further confirmed by the surface morphology analysis using atomic force microscopy (AFM).  相似文献   

5.
We have prepared and isolated the monodiazonium salt of nickel (II) tetraphenylporphyrin and grafted the corresponding complex to glassy carbon, pyrolysed photoresist film, gold and indium tin oxide surfaces via reduction of the diazonium moiety. Characterisations of the films by voltammetry, UV–vis spectroscopy and atomic force microscopy depth profiling confirm that the metallated porphyrin is intact in the film and is stably attached to the surface with well-behaved, but highly solvent-dependent electrochemistry. Under the grafting conditions used, the films appear to have close to monolayer thickness with the porphyrin macrocycles oriented predominantly upright on the surface.  相似文献   

6.
Polynuclear mixed‐valent nickel oxide and nickel hexacyanoferrate hybrid film was prepared on glassy carbon electrode by multiple scan cyclic voltammetry. The film growth was monitored using electrochemical quartz crystal microbalance (EQCM). The cyclic voltammogram of the nickel hexacyanoferrate film is characterized by single redox couple whereas nickel oxide/nickel hexacyanoferrate hybrid film exhibits two redox couples. Cyclic voltammetric features suggest that the charge transfer process in both films resembles that of surface‐confined redox species. In stronger basic solution (pH ≥9), nickel hexacyanoferrate film was gradually converted into nickel oxide film during potentiodynamic cycling. The peak potential of nickel oxide redox couple moved into more negative side with increasing pH of contacting solution whereas the peak potential of nickel hexacyanoferrate redox couple remains the same. Electrocatalytic behavior of hybrid film coated electrodes toward ascorbic acid, hydrazine and hydroxylamine was investigated using cyclic voltammetry technique. Analytical application of nickel oxide/nickel hexacyanoferrate hybrid film electrode was tested in amperometry and flow injection analysis.  相似文献   

7.
The electrochemical response of solution-based redox probes is commonly used to detect and monitor the formation and stability of films grafted to conducting substrates. In this work we examine redox probe responses at films grafted to glassy carbon (GC) and pyrolysed photoresist film (PPF) by electrooxidation of aliphatic primary amines. Cyclic voltammograms are obtained before and after soaking the modified surfaces in phosphate buffer and acetonitrile. For conditions where films exhibit large changes in electrochemical blocking properties, AFM measurements of film thickness and surface roughness, and XPS measurements of surface composition, are used to monitor the stability of the films. No changes in film structure or composition can be detected, demonstrating that electrochemical loss of blocking properties cannot be equated with large-scale loss of surface film. The origin of changes in probe response is discussed.  相似文献   

8.
张国权  杨凤林 《催化学报》2007,28(6):504-508
在水溶液中制备了掺杂蒽醌磺酸盐(AQS)的聚吡咯(PPy)/玻碳复合膜修饰电极,采用循环伏安法和旋转圆盘电极技术研究了该修饰电极在不同pH值溶液中的电化学行为以及在pH=5.5的磷酸盐缓冲溶液中对氧还原反应的电催化性能和动力学.结果表明,与裸玻碳电极相比,PPy膜的存在不仅降低了AQS的反应电位和峰电位差,而且增大了其氧化还原反应的峰电流,H2AQ/HAQ-氧化还原对的电离常数为9.5.AQS/PPy膜修饰电极上氧的还原主要是两电子还原为H2O2的不可逆过程,H2AQ对氧还原反应起主要催化作用,还原过程符合异相氧化还原催化机理.该修饰电极具有良好的电化学重现性.  相似文献   

9.
Russian Journal of Electrochemistry - In this paper, 9,10-anthraquinone (AQ) derivative-modified glassy carbon (GC) electrodes were studied towards the electrochemical reduction of oxygen in...  相似文献   

10.
The anodic polymerization of pyrrole (P) onto glassy carbon in an aqueous solution of the Kodak-AQ poly(ester sulfonic acid) polyelectrolyte gives a PP/AQ composite film. While incorporated as charge compensators during the anodic growth of PP, the entangled AQ chains cannot easily diffuse out upon reduction. The composite layer, resulting from such unique use of AQ ionomers (as electrolyte and dopant) possesses the features of both its conducting polymer and cation exchanger components. These include effective loading of hydrophobic cations, potential switch effect or permselective response. For example, the uptake of Ru(bpy)2+3 by the AQ anion, residing in the conducting polymer, is facilitated by an electrochemical event (reduction of the film to PP0/AQ). Similarly, the redox switchable PP component offers electrochemical control of the release of loaded cations. These and other attractive properties of PP/AQ composite layers are explored by cyclic voltammetry, chronocoulometry, potentiometry and flow injection amperometry.  相似文献   

11.
The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process. This paper is dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

12.
4‐Nitrophenyl layers were grafted on gold and glassy carbon surfaces by electrochemical reductive adsorption of the corresponding diazonium salt. Electrochemical conversion efficiencies of 4‐nitrophenyl moieties to 4‐aminophenyl moieties on gold versus on glassy carbon in a protic medium were investigated using X‐ray photoelectron spectroscopy (XPS). In total contrast to all previous comparative studies showing greater electrochemical reactivity of aryl diazonium salt‐derived layers on gold than on glassy carbon, a much lower rate of conversion to 4‐aminophenyl was observed on gold than on glassy carbon by both cyclic voltammetry (CV) and chronoamperometry (CA) methods. The lower electron transfer rate during conversion observed on gold versus glassy carbon was proposed to be due to a mechanism related to the molecular structure rearrangement of 4‐nitrophenyl during the process on glassy carbon. However, whilst complete conversion of 4‐nitrophenyl to 4‐aminophenyl on gold by chronoamperometry was achieved, on glassy carbon complete reduction could not be achieved under the same conditions.  相似文献   

13.
The electrochemical properties of glassy carbon (GC) electrodes modified with 9,10‐anthraquinone (AQ) have been investigated. Electrografting of GC surface was carried out from the solution of the AQ diazonium derivative. The blocking action of GC/AQ electrodes for Fe(CN)$\rm{{_{6}^{3-}}}$ and Ru(NH3)$\rm{{_{6}^{3+}}}$ redox probes was studied using cyclic voltammetry (CV) and the rotating disk electrode (RDE) method. It was established that the extent of blocking was a function of AQ surface concentration. A peculiar behavior was observed at the potentials of AQ reduction.  相似文献   

14.
The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.  相似文献   

15.
The objective of this work is to explore approaches to enhance electrochemical signals through sequential deposition and capping of gold particles. Gold nanoparticles are electrodeposited from KAuCl4 solution under potentiostatic conditions on glassy carbon substrates. The number density of the nanoparticles is increased by multiple deposition steps. To prevent secondary nucleation processes, the nanoparticles are isolated after each potentiostatic deposition step by self‐assembled monolayers (SAMs) of decanethiol or mercaptoethanol. The increasing number of particles during five deposition/protection rounds is monitored by assembling electroactive SAMs using a ferrocene‐labeled alkanethiol. A precise estimation of the surface area of the gold nanoparticles by formation of an oxide layer on gold is difficult due to oxidation of the glassy carbon surface. As an alternative approach, the charge flow of the electroactive SAM is used for surface measurement of the gold surface area. A sixfold increase in the redox signal in comparison to a bulk gold surface is observed, and this increase in redox signal is particularly notable given that the surface area of the deposited nanoparticles is only a fraction of the bulk gold surface. After five rounds of deposition there is a gold loading of 1.94 μg cm?2 of the deposited nanoparticles as compared to 23.68 μg cm?2 for the bulk gold surface. Remarkably, however, the surface coverage of the ferrocene alkanethiol on the bulk material is only 10 % of that achieved on the deposited nanoparticles. This enhancement in signal of the nanoparticle‐modified surface in comparison to bulk gold is thus demonstrated not to be attributable to an increase in surface area, but rather to the inherent properties of the surface atoms of the nanoparticles, which are more reactive than the surface atoms of the bulk material.  相似文献   

16.
Arylmethyl films have been grafted to glassy carbon surfaces and to pyrolyzed photoresist films (PPFs) by electrochemical oxidation of 1-naphthylmethylcarboxylate and 4-methoxybenzylcarboxylate. Atomic force microscopy (AFM) and electrochemistry were used to characterize the as-prepared films and to monitor changes induced by post-preparation treatments. Film thickness was measured by depth profiling using an AFM tip to remove film from the PPF surface. Surface coverage of electroactive modifiers was estimated from cyclic voltammetry, and monitoring the response of a solution-based redox probe at grafted surfaces gave a qualitative indication of changes in film properties. For preparation of the films, the maximum film thickness increased with the potential applied during grafting, and all films were of multilayer thickness. The apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple was very low at as-prepared films. After film-grafted electrodes were transferred to pure acetonitrile-electrolyte solution and subjected to negative potential excursions, the response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple changed and was consistent with faster electron-transfer kinetics, the film thickness decreased and the surface roughness increased substantially. Applying a positive potential to the treated film reversed changes in film thickness, but the voltammetric response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained kinetically fast. After as-prepared films were subjected to positive applied potentials in acetonitrile-electrolyte solution, the apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained very slow and the measured film thickness was the same or greater than that before treatment at positive potentials. Mechanisms are considered to explain the observed effects of applied potential on film characteristics.  相似文献   

17.
Highly oriented pyrolytic graphite (HOPG) and graphene grown on Ni (Ni‐Gra) or Cu (Cu‐Gra) by chemical vapour deposition were modified with thick anthraquinone (AQ) films (7?60 nm) by redox grafting of the pertinent diazonium salt. Glassy carbon (GC) electrodes were used for comparison. The AQ‐modified GC electrodes showed excellent blocking properties towards the Fe(CN)63?/4? redox probe, although it was noted that in the case of Ni‐Gra and Cu‐Gra, the blocking ability depended strongly on the underlying substrate. Oxygen reduction studies revealed good electrocatalytic activity of AQ‐modified HOPG, Ni‐Gra, and Cu‐Gra, compared with the bare electrodes.  相似文献   

18.
Composite PEDOT/Au films were obtained by chemical deposition of dispersed gold nanoparticles into PEDOT (poly-3,4-ethylenedioxythiophene) conducting polymer matrix. Morphology of the obtained gold-containing films was studied by SEM and TEM methods. To study the kinetics of the hydrogen peroxide electroreduction that proceeds on glassy carbon electrodes modified with such films, we used phosphate buffer solutions containing addenda of hydrogen peroxide species. It was observed that the electroreduction process takes place on both the gold clusters?? surface and the film surface free of metal inclusions. The rate of the process is higher in the first case and rises with increasing the gold content in modifying films, but in the limit of large gold contents it is limited only by diffusion of hydrogen peroxide species in the bathing solution. A simple theory of such parallel electroreduction is proposed, which appears to allow for quantitative treatment of the obtained results.  相似文献   

19.
Polynuclear mixed‐valent nickelhexacyanoferrate/phosphomolybdate (NiHCF/PMo), nickel/phosphomolybdate (Ni/PMo) hybrid films were prepared on glassy carbon electrode by multiple scan cyclic voltammetry. Combination of individual components gave the opportunity to fabricate hybrid film with tunable electrochemical and analytical properties compared to individual components. The film growth was monitored using electrochemical quartz crystal microbalance (EQCM). The cyclic voltammogram of the nickelhexacyanoferrate/phosphomolybdate film is characterized by four redox couple whereas nickel/phosphomolybdate hybrid film exhibits three redox couples. Cyclic voltammetric features suggest that the charge transfer process in both films resembles that of surface‐confined redox species. The voltammetric response of nickelhexacyanoferrate/phosphomolybdate film electrode was found to be depending on the pH of the contacting solution. Electrocatalytic behavior of nickel/phosphomolybdate hybrid film coated electrodes toward oxidation of ascorbic acid and reduction of sulfur oxoanion, S2O , was investigated using cyclic voltammetry technique. Analytical application of nickel/phosphomolybdate hybrid film electrode was tested in amperometry and flow injection analysis.  相似文献   

20.
The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号