首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纯聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)基凝胶电解质常常受制于低离子电导率,阻碍了其在染料敏化太阳电池(dye-sensitized solar cells,DSSCs)中的应用。 而利用纳米填充可提高凝胶电解质离子电导率及凝胶电解质DSSCs的性能。 本文使用功能化的多壁碳纳米管(f-MWCNT)作为PVDF-HFP凝胶电解质的纳米填充物,通过改变f-MWCNT的质量分数来研究其对电解质的离子电导率和离子扩散的影响,进而研究其对DSSCs的转化效率和长期稳定性的增强作用。 研究发现:质量分数0.5%的f-MWCNT明显提高了PVDF-HFP凝胶电解质的离子电导率和离子扩散系数。 并且,该凝胶电解质基DSSCs的光转换效率可达5.28%,相比于未填充的PVDF-HFP凝胶电解质基DSSCs(4.01%),其效率提高了31.7%。 42 d后,该电池依然可以保持最初转化效率的86.5%。 实验结果证实了f-MWCNT在纳米填充方面的巨大潜能,为采用纳米填充物提高凝胶电解质DSSCs的性能提供参考。  相似文献   

2.
Cao D  Peng J  Hong Y  Fang X  Wang L  Meier H 《Organic letters》2011,13(7):1610-1613
Double donor-acceptor (D-A) branched dyes (DBD) with a phenothiazine unit as electron donor and a 2-cyanoacrylic acid unit as electron acceptor were synthesized and used as sensitizers for solar cells (DSSCs). The conversion efficiency of the DSSCs amounts up to 4.22% (2.91% for the single D-A branched dye) under AM 1.5 G irradiation. The results show that the performance of DSSCs can be effectively enhanced by the cooperation of two donor-acceptor containing branches in one molecule of the dyes.  相似文献   

3.
用甲基丙烯酸β-羟乙酯(HEMA)与N-乙烯基吡咯烷酮(NVP)共聚物P(HEMA-NVP)、甲基丙烯酸甲酯(MMA)与N-乙烯基吡咯烷酮共聚物P(MMA-NVP)为原料制备了聚合物凝胶电解质, 用电化学阻抗谱(EIS)研究了聚合物凝胶电解质中聚合物基质的结构与组成对准固态染料敏化太阳能电池(DSSCs)光伏性能的影响. 不同交联剂用量、不同HEMA用量的P(HEMA-NVP)共聚物及不同MMA用量的P(MMA-NVP)吸收液态电解质后分别形成HGelI、HGelII、MGel凝胶电解质. 结果发现, 随共聚物P(HEMA-NVP)中交联剂由0.1%(w, 下同)增大到0.6%时, 形成的HGelI 组装的DSSCs的光电转化效率(η)先增大后降低, 交联剂用量为0.4%时, DSSCs的η为最大, 为5.54%(光强100 mW·cm-2). 同时, 比较HGelII 系列和MGel 系列DSSCs的光电性能参数发现, 含有羟基的HGel 系列的η要高于MGel 系列, 而后者的开路电压(Voc)值高于前者. 在HGelII 系列中, HEMA含量为60%(w)时, DSSCs的η最高. 电化学阻抗谱分析表明共聚物中交联结构的不同影响了电池内部的界面阻抗及离子的传输, 引入羟基有利于降低界面阻抗. 通过调整共聚物中交联剂用量和羟基含量可改善DSSCs的光伏性能.  相似文献   

4.
摘要合成了新型席夫碱配体及其锌配合物, 并利用核磁共振氢谱、 紫外 可见吸收光谱和荧光光谱等方法对配体及其配合物进行了表征. 将席夫碱及其锌的配合物作为光敏剂应用在染料敏化纳米薄膜太阳能电池中, 配合物染料比席夫碱配体的光电转化效果更好, 能量转化效率为1.45%(AM 1.5, 100 mW·cm-2).  相似文献   

5.
Novel carboxylated oligothiophenes with different thiophene units were designed and synthesized as photosensitizers in dye-sensitized solar cells (DSSCs) for efficient opto-electric materials. The introduction of -COOH into thiophene molecules can lead to a red shift of UV-visible absorption, increase light-harvesting efficiency, and enhance photoinduced charge transport by forming efficient covalent bonds to the substrate surface. A red shift of the absorption spectrum of oligothiophene is also achieved by the increase in the number of thiophene units. The DSSCs based on the oligomers have excellent photovoltaic performances. Under 100 mW cm(-2) irradiation a short-circuit current of 10.57 mA cm(-2) and an overall energy conversion efficiency of 3.36 % is achieved when pentathiophene dicarboxylated acid was used as a sensitizer. The incident photo-to-current conversion efficiency (IPCE) has a maximum as high as 80 %. In addition, photovoltage and photocurrent transients show that slow charge recombination in DSSCs is important for efficient charge separation and excellent photoelectric conversion properties of the oligomers. These initial and promising results suggest that carboxylated oligothiophenes are efficient photosensitizers.  相似文献   

6.
In this work, the photoconversion efficiencies of ZnO having diverse microstructures and structural defects have been investigated. A conversion efficiency of 1.38% was achieved for the DSSCs fabricated with as prepared ZnO nanorods having minimum vacancy defects and a favourable one dimensional directional pathway for electron conduction. The DSSCs fabricated with ZnO nanoparticles exhibited relatively low conversion efficiency of 1.004% probably due to multiple trapping/detrapping phenomena within the grain boundaries and ZnO flowers though exhibited a high dye adsorption capability exhibited the lowest conversion efficiency of 0.59% due to a high concentration of structural defects. Based on the experimental evidences, we believe that the type of defects and their concentrations are more important than shape in controlling the overall performance of ZnO based DSSCs.  相似文献   

7.
A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar celIs(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.  相似文献   

8.
A novel TiO(2) double-layer (DL) film consisting of TiO(2) hollow spheres (HSs) as overlayer and single-crystalline TiO(2) nanorod arrays (RAs) as underlayer was designed as the photoanode of dye-sensitized solar cells (DSSCs). This new-typed TiO(2) HS/RA DL film could significantly improve the efficiency of DSSCs owing to its synergic effects, i.e. the relatively large specific surface area of TiO(2) HSs for effective dye adsorption, enhanced light harvesting capability originated from TiO(2) RA film, and rapid interfacial electron transport in one-dimensional TiO(2) nanorod arrays. The overall energy-conversion efficiency of 4.57% was achieved by the formation of TiO(2) DL film, which is 16% higher than that formed by TiO(2) HS film and far larger than that formed by TiO(2) RA film (η=0.99%). The light absorption and interfacial electron transport, which play important roles in the efficiency of DSSCs, were investigated by UV-vis absorption spectra and electrochemical impedance spectra.  相似文献   

9.
Dye‐sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low‐carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt‐free binary Co‐Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co‐Ni‐based DSSCs are higher than those of Pt‐only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39 %, fast start‐up, multiple start/stop cycling, and good stability under extended irradiation.  相似文献   

10.
Dye-sensitized solar cells (DSSCs) have established themselves as an alternative to conventional solar cells owing to their remarkably high power conversion efficiency, longtime stability and low-cost production. DSSCs composed of a dyed oxide semiconductor photoanode, a redox electrolyte and a counter electrode. In these devices, conversion efficiency is achieved by ultra-fast injection of an electron from a photo excited dye into the conduction band of metal oxide followed by subsequent dye regeneration and holes transportation to the counter electrode. The energy conversion efficiency of DSSC is to be dependent on the morphology and structure of the dye adsorbed metal oxide photoanode. Worldwide considerable efforts of DSSCs have been invested in morphology control of photoanode film, synthesis of stable optical sensitizers and improved ionic conductivity electrolytes. In the present investigation, a new composite nano structured photoanodes were prepared using TiO2 nano tubes (TNTs) with TiO2 nano particles (TNPs). TNPs were synthesized by sol–gel method and TNTs were prepared through an alkali hydrothermal transformation. Working photoanodes were prepared using five pastes of TNTs concentrations of 0, 10, 50, 90, and 100 % with TNPs. The DSSCs were fabricated using Indigo carmine dye as photo sensitizer and PMII (1-propyl-3-methylimmidazolium iodide) ionic liquid as electrolyte. The counter electrode was prepared using Copper sulfide. The structure and morphology of TNPs and TNTs were characterized by X-ray diffraction and electron microscopes (TEM and SEM). The photocurrent efficiency is measured using a solar simulator (100 mW/cm2). The prepared composite TNTs/TNPs photoanode could significantly improve the efficiency of dye-sensitized solar cells owing to its synergic effects, i.e. effective dye adsorption mainly originated from TiO2 nanoparticles and rapid electron transport in one-dimensional TiO2 nanotubes. The results of the present investigation suggested that the DSSC based on 10 % TNTs/TNPs showed better photovoltaic performance than cell made pure TiO2 nanoparticles. The highest energy-conversion efficiency of 2.80 % is achieved by composite TNTs (10 %)/TNPs film, which is 68 % higher than that pure TNPs film and far larger than that formed by bare TNTs film (94 %). The charge transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra and the results showed that composite TNTs/TNPs film-based cell possessed the lowest transfer resistances and the longest electron lifetime. Hence, it could be concluded that the composite TNTs/TNPs photoanodes facilitate the charge transport and enhancing the efficiencies of DSSCs.  相似文献   

11.
Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone.  相似文献   

12.
A novel efficient metal free sensitizer containing asymmetric double donor-π-acceptor chains (DC) was synthesized for dye-sensitized solar cells (DSSCs). Comparing to 3.80%, 4.40% and 4.64% for the DSSCs based on the dyes with single chain (SC1, SC2) and cosensitizers (SC1 + SC2), the overall conversion efficiency reaches 6.06% for DC-sensitized solar cells as a result of its longer electron lifetime and higher incident monochromatic photon-to-current conversion efficiency.  相似文献   

13.
Quasi-solid state dye-sensitized solar cells (DSSCs) were assembled by in-situ chemical cross-linking of a gel electrolyte precursor containing liquid electrolyte. The DSSCs assembled with this cross-linked gel polymer electrolyte showed higher open circuit voltage and lower short-circuit photocurrent density than those of DSSCs with liquid electrolyte. Addition of SiO2 nanoparticles into the cross-linked gel polymer electrolyte significantly improved the photovoltaic performance and long-term stability of the DSSCs. The optimized quasi-solid state DSSC showed high conversion efficiency, 6.2% at 100 mW cm?2 with good durability.  相似文献   

14.
We investigated the fabrication of inverse opal carbon counter electrodes using a colloidal templating method for DSSCs. Specifically, bare inverse opal carbon, mesopore-incoporated inverse opal carbon, and graphitized inverse opal carbon were synthesized and stably dispersed in ethanol solution for spray coating on a FTO substrate. The thickness of the electrode was controlled by the number of coatings, and the average relative thickness was evaluated by measuring the transmittance spectrum. The effect of the counter electrode thickness on the photovoltaic performance of the DSSCs was investigated and analyzed by interfacial charge transfer resistance (R(CT)) under EIS measurement. The effect of the surface area and conductivity of the inverse opal was also investigated by considering the increase in surface area due to the mesopore in the inverse opal carbon and conductivity by graphitization of the carbon matrix. The results showed that the FF and thereby the efficiency of DSSCs were increased as the electrode thickness increased. Consequently, the larger FF and thereby the greater efficiency of the DSSCs were achieved for mIOC and gIOC compared to IOC, which was attributed to the lower R(CT). Finally, compared to a conventional Pt counter electrode, the inverse opal-based carbon showed a comparable efficiency upon application to DSSCs.  相似文献   

15.
In the past three decades, dye-sensitized solar cells (DSSCs) have gained increased recognition as a potential substitute for inexpensive photovoltaic (PV) devices, and their maximum efficiency has grown from 7% to 14.3%. Recent developments in DSSCs have attracted a plethora of research activities geared at realizing their full potential. DSSCs have seen a revival as the finest technology for specific applications with unique features such as low-cost, non-toxic, colourful, transparent, ease of fabrication, flexibility, and efficient indoor light operation. Several organic materials are being explored and employed in DSSCs to enhance their performance, robustness, and lower production costs to be viable alternatives in the solar cell markets. This review provides a concise summary of the developments in the field over the past decade, with a special focus on the incorporation of organic materials into DSSCs. It covers all elements of the DSSC technology, including practical approaches and novel materials. Finally, the emerging applications of DSSCs, and their future promise are also discussed.  相似文献   

16.
We designed and synthesized a series of novel electron‐accepting zinc(II)phthalocyanines (ZnPc) and probed them in p‐type dye sensitized solar cells (p‐DSSCs) by using CuO as photocathodes. By realizing the right balance between interfacial charge separation and charge recombination, optimized fill factors (FFs) of 0.43 were obtained. With a control over fill factors in p‐DSSCs in hand we turned our attemtion to t‐DSSCs, in which we combined for the first time CuO‐based p‐DSSCs with TiO2‐based n‐DSSCs using ZnPc and N719. In the resulting t‐DSSCs, the VOC of 0.86 V is the sum of those found in p‐ and n‐DSSCs, while the FF remains around 0.63. It is only the smaller Jscs in t‐DSSCs that limits the efficiency to 0.69 %.  相似文献   

17.
We have designed and synthesized a novel ladder-type heteroacene dye consisting uniquely of thiophene segments as a photosensitizer for the dye-sensitized solar cells (DSSCs). The onset of the IPCE spectrum for the dye not only reaches up to 700 nm with a high IPCE (>60%) but also a solar energy-to-electricity conversion efficiency of 2.31% is achieved. Even though the efficiency is slightly lower than those of other dyes reported previously, this work opens up a new strategy to design heteroaromatic fused photosensitizers for DSSCs.  相似文献   

18.
The champion dye-sensitized solar cells (DSSCs) based on TiO(2) nanoparticles nearly reach the limit of photo-current density using the black dye or zinc porphyrin dye as sensitizer. However, the way to make ordinary DSSCs more efficient as well as to understand the mechanism is still essential. Here we present an elegant UV irradiation treatment of TiO(2) nanosheets to enhance the performance of DSSCs based on the TiO(2) nanosheets via room temperature removal of inorganic surfactants and reconstruction of the (001) surface of TiO(2) nanosheets, killing two birds with one stone. UV irradiation was utilized to remove the fluorine-surfactant on the surface of anatase TiO(2) nanosheets with a high percentage of exposed {001} facets which were synthesized with the aid of hydrofluoric acid. The nanosheets treated with UV irradiation for 40 min had the advantage of improving the photoelectric conversion efficiency of DSSCs by 17.6%, compared to that without UV treatment when they were introduced into DSSCs as photoanode materials. The improved efficiency was ascribed to more dye adsorption. A theoretical calculation proposed that UV irradiation induced microfaceted steps on the TiO(2) surface by two domain (1 × 4) reconstruction after UV irradiating the (1 × 1) (001) surface. The microfaceted steps increase the active surface area of the TiO(2) nanosheets by increasing the exposure of titanium atoms and engendering active sites.  相似文献   

19.
In this study, bulk TiO2 nanorods are synthesized by hydrothermal method in order to be used in the dye‐sensitized solar cells (DSSCs). These nanorods are annealed at different temperatures and deposited electrophoretically. The influence of post heat treatment has been thoroughly investigated on fabricated DSSCs using electrochemical impedance spectroscopy (EIS). The results have revealed that the diameter, size and density of the prepared bulk nanorods are function of annealing temperatures. Optimization of the prepared DSSCs has led to an improved efficiency (ca. 3.82%) under AM 1.5 simulated sunlight.  相似文献   

20.
A series of new push-pull organic dyes (BT-I-VI), incorporating electron-withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π?spacer have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). In comparison with the model compound T1, these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π?spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π-π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51?%, in which BT-I-based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 81.1?%, a short-circuit photocurrent density (J(sc)) of 15.69?mA?cm(-2), an open-circuit photovoltage (V(oc)) of 778?mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51?% under standard global AM 1.5 solar light conditions. Most importantly, long-term stability of the BT-I-III-based DSSCs with ionic-liquid electrolytes under 1000?h of light soaking was demonstrated and BT-II with a furan moiety exhibited better photovoltaic performance of up to 5.75?% power conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号