首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Boundary integral equation (BIE) methods are described for the prediction of sound propagation, in particular from a line source, over a flat plane of inhomogeneous impedance. Approximate methods, which satisfy reciprocity, for the calculation of the wave field over a two-impedance plane are proposed. These approximations, applied to propagation from a line source, give results agreeing well with those of the BIE method. When they are applied to propagation from a point source, agreement with experiment is shown.  相似文献   

2.
A simplified boundary element method (BEM) for dealing with high-frequency sound is proposed. The boundary integral equation is modified into a quadratic form to enable the prediction of sound levels in the one-third octave band analysis. Monopole and dipole source terms in the conventional BEM are transformed into the auto- and cross-spectra of two vibrating sources, in which the cross-spectra are eventually neglected by assuming that the correlation coefficients involved are negligible. The present method is compared with the Rayleigh integral for calculating the sound pressure radiated from a baffled panel, in terms of the application limit. The characteristic length of the boundary element and the applicable frequency range can be determined by the lower limit value of the correlation coefficient. As a test example, the field pressure radiated from a partially vibrating sphere is predicted and the resultant trend is in good agreement with the analytic solution as far as the related correlation coefficient satisfies the assumption. The overdetermination process for overcoming nonuniqueness in exterior radiation problems is unnecessary in the present method because phase information can be ignored. The results of the calculation show that the proposed method is acceptable for solving the exterior radiation problem at a high-frequency range in a timely manner.  相似文献   

3.
Salomons建立的抛物方程(CNPE)方法可以预测非均匀环境中的声屏障插入损失。但是该方法在声屏障与声源距离较近时会产生较大误差。文中通过理论分析发现产生该问题的原因在于CNPE方法所使用的Gauss初始场仅适用于小仰角(10°以内)范围内的声波。为解决Gauss初始场引起的问题,推导了可以用于较大仰角声波的更高阶数的Gauss初始场。通过数值仿真对比了不同阶数的初始场在CNPE方法中的效果。结果表明:4阶初始场是最适合CNPE方法的初始场,将该初始场与CNPE方法相结合,可以准确预测当声屏障与声源距离较近时的插入损失.   相似文献   

4.
An equivalent source model is developed for setting boundary conditions on the parabolic diffraction equation in order to simulate ultrasound fields radiated by strongly focused medical transducers. The equivalent source is defined in a plane; corresponding boundary conditions for pressure amplitude, aperture, and focal distance are chosen so that the axial solution to the parabolic model in the focal region of the beam matches the solution to the full diffraction model (Rayleigh integral) for a spherically curved uniformly vibrating source. It is shown that the proposed approach to transferring the boundary condition from a spherical surface to a plane makes it possible to match the solutions over an interval of several diffraction maxima around the focus even for focused sources with F-numbers less than unity. This method can be used to accurately simulate nonlinear effects in the fields of strongly focused therapeutic transducers using the parabolic Khokhlov–Zabolotskaya equation.  相似文献   

5.
An exact solution is obtained to the problem of sound diffraction by an elastic or impedance sphere located near an impedance or elastic boundary of a halfspace. The problem is solved using the Helmholtz integral equation in which the field of a point source in the halfspace with an elastic boundary is used as the Green function. The diffracted field is represented as a series expansion in spherical harmonics. The expansion coefficients are determined from a set of independent algebraic systems of equations. The matrix coefficients of these systems are determined as integrals of the products of the associated Legendre polynomials on the complex plane with respect to the real and complex angles of the sound incidence on the halfspace boundary. To decrease the number of such integrals, expansions using the Klebsh-Gordon coefficients are applied. As a result, algorithms for calculating the scattered field in the halfspace are obtained.  相似文献   

6.
Diffraction of an acoustic wave by an elastic cylinder near the surface of an elastic halfspace is considered. The solution relies on a Helmholtz-type integral equation and uses the Green function of an elastic halfspace. The latter function is represented in the form of an integral over the Sommerfeld contour on the plane of a complex variable that has the meaning of the angle of the wave incidence on the halfspace boundary. An integral equation for the sound pressure distribution over the cylinder surface is derived. This equation is reduced to an infinite system of equations for the Fourier-series expansion coefficients of this distribution. The results obtained are valid for the diffraction of a cylindrical wave and a plane wave. They also describe the diffraction of a spherical wave when the transmitter and receiver are far from the cylinder and lie in one plane that is orthogonal to the cylinder axis.  相似文献   

7.
8.
Inhomogeneity and anisotropy are intrinsic characteristics of daytime and nighttime atmospheric turbulence. For example, turbulent eddies are often stretched in the direction of the mean wind, and the turbulence statistics depends on the height above the ground. Recent studies have shown that the log-amplitude and phase fluctuations of plane and spherical sound waves are significantly affected by turbulence inhomogeneity and anisotropy. The present paper is devoted to studies of the mean sound field and the coherence functions of plane and spherical sound waves propagating through inhomogeneous anisotropic turbulence with temperature and velocity fluctuations. These statistical moments of a sound field are important in many practical applications, e.g., for source detection, ranging, and recognition. Formulas are derived for the mean sound field and coherence function of initially arbitrary waveform. Using the latter formula, we also obtained formulas for the coherence functions of plane and spherical sound waves. All these formulas coincide with those known in the literature for two limiting cases: homogeneous isotropic turbulence with temperature and wind velocity fluctuations, and inhomogeneous anisotropic turbulence with temperature fluctuations only. Using the formulas obtained, we have numerically shown that turbulence inhomogeneity significantly affects the coherence functions of plane and spherical sound waves.  相似文献   

9.
商德江  钱治文  何元安  肖妍 《物理学报》2018,67(8):84301-084301
针对浅海信道下弹性结构声辐射预报尚无高效可靠的研究方法,提出了一种浅海信道下弹性结构声辐射快速预报的联合波叠加法.该方法结合了浅海信道传输函数、多物理场耦合数值计算法和波叠加法理论,运用该方法可对浅海信道下弹性结构辐射声场进行快速预报.经数值法和解析解法验证后,从信道下辐射源、环境影响和辐射声场测量的角度研究分析了浅海信道下弹性圆柱壳的声辐射特性,阐释了进行浅海信道下结构声辐射研究的必要性.研究结果表明,仅在低频浅海信道下弹性结构可近似等效为点源,信道上下边界对声场产生显著的耦合影响,高频段的空间声场指向性分布尤为明显,垂直线列阵进行信道下结构辐射声功率测量时,测量结果受到信道环境边界和潜深的影响较大.  相似文献   

10.
A solution to the problem of the mean sound field in liquid and elastic media with spherical particles causing monopole scattering of sound is proposed. The integral equation obtained for the field allows passage to the Helmholtz equation with an effective wave number. The characteristic features of the solution are the absence of radiation loss in the mean field wave and the absence of limitations on the particle concentration. The integral equation is used as the basis for solving the problem of the incidence of a plain sound wave at an arbitrary angle on a plane layer of a medium with particles.  相似文献   

11.
In 1909 Sommerfeld gave an exact solution for the reflection of a spherical wave from a plane surface in terms of an oscillatory integral and also presented an asymptotic solution for the case where both source and receiver are at the boundary. Weyl (1919) presented an alternative solution and also an asymptotic solution for the case where the source is at the boundary. It is known that the general case is solved if a general solution for the case where the source is at the boundary is known. Here it is demonstrated that it is sufficient to have the general solution for the case where both source and receiver are at the boundary. This is mainly of theoretical interest, but may have practical applications. As an example it is demonstrated that Sommerfeld's approximate solution gives Ingard's (1951) approximate solution which is valid for arbitrary source and receiver heights.  相似文献   

12.
三维Helmholtz方程外问题的自然积分方程及其数值解   总被引:4,自引:0,他引:4  
邬吉明  余德浩 《计算物理》1999,16(5):449-456
用文[2,3]提出的自然边界归化方法来处理三维Helmholtz方程的外边值问题。在简要介绍如何用球谐展开的方法得到Helmholtz问题在外球域上的自然积分方程后,给出求解该自然积分方程的一种数值方法及相应的数值算例。  相似文献   

13.
针对传声器阵列两侧存在相干声源的非自由声场重建问题,提出基于球面谐波函数扩展近场声全息理论的相干声场重建方法。该方法在已知测量面两侧声源几何位置时,使用单层传声器阵列获取测量面处的声压分布,通过最小二乘法获得与目标声源和干扰噪声源响应对应的最优球波函数扩展项数和最优系数向量,结合测点位置的空间坐标进行声波分解,并分别重建出各声源在测量面上的声压分布。为了验证方法的有效性,分别给出了相干噪声源为球形声源和非球形声源的仿真验证,并在全消声室内对双扬声器产生的相干声场的重建进行了实验验证。结果表明:该方法对球形声源和非球形声源干扰下的声场重建都具有较好的效果,球形声源干扰下的重建精度更高。   相似文献   

14.
Inhomogeneity and anisotropy are intrinsic characteristics of daytime and nighttime turbulence in the atmospheric boundary layer. In the present paper, line-of-sight sound propagation through inhomogeneous, anisotropic turbulence with temperature and velocity fluctuations is considered. Starting from a parabolic equation and using the Markov approximation, formulas are derived for the correlation functions and variances of log-amplitude and phase fluctuations of a spherical sound wave. These statistical moments of a sound field are important for many practical applications in atmospheric acoustics. The derived formulas for the correlation functions and variances generalize those already known in the literature for two limiting cases: (a) homogeneous, isotropic turbulence, and (b) inhomogeneous, anisotropic turbulence with temperature fluctuations only. Furthermore, the formulas differ from those for the case of plane wave propagation. Using the derived formulas and Mann's spectral tensor of velocity fluctuations for shear-driven turbulence, the correlation functions and variances of log-amplitude and phase fluctuations are studied numerically. The results obtained clearly show that turbulence inhomogeneity and anisotropy significantly affect sound propagation in the atmosphere.  相似文献   

15.
For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.  相似文献   

16.
Hasheminejad SM  Maleki M 《Ultrasonics》2006,45(1-4):165-177
An exact analysis is carried out to study interaction of a time-harmonic plane progressive sound field with a radially inhomogeneous thick-walled elastic isotropic spherical shell suspended in and filled with compressible ideal fluid mediums. Using the laminated approximation method, a modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics. Taylor’s expansion theorem is then employed to obtain the solution to the modal state equation ultimately leading to calculation of a global transfer matrix. Numerical example is given for a water-submerged/air-filled Aluminum/Zirconia elastic spherical sandwich shell containing a functionally graded interlayer and subjected to an incident progressive plane sound wave. The mechanical properties of the interlayer are assumed to vary smoothly and continuously across the thickness with the change of volume concentration of its constituents. The effect of incident wave frequency, thickness and compositional gradient of the interlayer on the form function amplitude and the average radiation force acting on the composite shell are examined. Limiting cases are considered and fair agreements with well-known solutions are established.  相似文献   

17.
以亚临界三维圆柱绕流的气动噪声为对象,研究声类比理论中偶极子及四极子源模型在预测低Mach数流动气动声的可靠性及准确性。使用大涡模拟(LES)得到非定常流场,并依据声类比中的Curle等效偶极子面源和Lighthill四极子体源模型,提取相应的声源数据,经Fourier变换得到涡脱落频率处的声源信息,进而定量预测圆柱绕流的气动声。结果表明:Curle模型的结果与实验结果吻合良好,Lighthill体源模型预测的准确性依赖于声源区域截断,不恰当的声源截断将导致错误的声场预测。   相似文献   

18.
The classical normal-mode theory expresses the steady-state soundfield in an enclosure produced by a sound source as a series of normal modes ofvibration.Experimental facts are not often explained by this theory,and it wasconjectured that the normal-mode expression is not the complete solution ofthe wave equation in the enclosure,but only the reverberant part of it,and thereshould be an additional term representing the direct spherical radiation to makethe solution complete.The problem is examined by critically reviewing the de-rivation of the normal-mode expression,and by theoretical analysis of thesteady-state sound field in the room and experimental measurements therein.The conjecture is thus confirmed,and it is definitely shown that the sound fieldshould contain the direct wave as well as the standing waves(normal modes)formed by the confinement of the boundary surfaces.Relevant mathematicalexpressions are derived.  相似文献   

19.
In this article, the propagation of sound from a monopole source above an impedance-backed porous layer is examined. The sound fields can be expressed in an integral form that is amenable to further analysis. A standard method of steepest descents is applied to evaluate the integral where the method of pole subtraction is needed to obtain a uniform asymptotic solution for the sound field above the plane surface. To obtain a numerical solution, the location of the pole was determined numerically by means of the Newton-Raphson method. Based on the pole location, the sound fields can then be calculated numerically. It has been demonstrated that the use of a plane wave reflection coefficient to calculate the sound fields is a special case of the asymptotic formula when the pole is located further away from the saddle point.  相似文献   

20.
This article discusses an open-loop wave field synthesis (WFS) approach for the reproduction of spatially correlated sound fields. The main application concerns laboratory reproduction of turbulent boundary layer wall pressure on aircraft fuselages and measurement of their sound transmission loss. The problem configuration involves reconstruction of random sound pressure distributions on a planar reproduction surface using a planar array of reproduction monopoles parallel to the reproduction plane. In this paper, the WFS formulation is extended to sound fields with imposed time and spatial correlation properties (or equivalently imposed cross-spectral density in the frequency and wave number domains). Numerical examples are presented for the reproduction of a propagating plane wave, diffuse acoustic field and wall pressure in subsonic or supersonic turbulent boundary layers. The reproduction accuracy is examined in terms of the size of the source plane and reproduction plane, their separation, and the number of reproduction sources required per acoustic wavelength. While the reproduction approach cannot reconstruct sub-wavelength correlation scales of subsonic turbulent boundary layers, it effectively reconstructs correlation scales larger than the acoustic wavelength, making it appropriate for diffuse acoustic field and supersonic turbulent layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号