首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Let A be an n×n complex matrix. For a suitable subspace M of Cn the Schur compression A M and the (generalized) Schur complement A/M are defined. If A is written in the form
A= BCST
according to the decomposition Cn=MM and if B is invertible, then
AM=BCSSB?1C
and
A/M=000T?SB?1C·
The commutativity rule for Schur complements is proved:
(A/M)/N=(A)/N)/M·
This unifies Crabtree and Haynsworth's quotient formula for (classical) Schur complements and Anderson's commutativity rule for shorted operators. Further, the absorption rule for Schur compressions is proved:
(A/M)N=(AN)M=AM whenever M?N
.  相似文献   

2.
Let A = (A1 ¦ A2 ¦ ··· ¦ Ar) and B = (B1 ¦ B2 ¦ ··· ¦ Br) be column-wise partitioned matrices over complex numbers. Then an extended Kronecker product is A ⊙ B = (A1 ? B1 ¦ ··· ¦ Ar ? Br), where Ai ? Bi is the Kronecker product of Ai and Bi. Some properties of an extended Kronecker product of matrices are investigated. The properties of the solutions of the systems of linear equations whose coefficient matrices are extended Kronecker products of matrices are studied.  相似文献   

3.
The Schur product of two n×n complex matrices A=(aij), B=(bij) is defined by A°B=(aijbij. By a result of Schur [2], the algebra of n×n matrices with Schur product and the usual addition is a commutative Banach algebra under the operator norm (the norm of the operator defined on Cn by the matrix). For a fixed matrix A, the norm of the operator B?A°B on this Banach algebra is called the Schur multiplier norm of A, and is denoted by ∥Am. It is proved here that ∥A∥=∥U1AU∥m for all unitary U (where ∥·∥ denotes the operator norm) iff A is a scalar multiple of a unitary matrix; and that ∥Am=∥A∥ iff there exist two permutations P, Q, a p×p (1?p?n) unitary U, an (n?p)×(n?p)1 contraction C, and a nonnegative number λ such that
A=λPU00CQ;
and this is so iff ∥A°A?∥=∥A∥2, where ā is the matrix obtained by taking entrywise conjugates of A.  相似文献   

4.
It is shown, for n ? m ? 1, that there exist inner maps Φ: BnBm with boundary values Φ1: Bn → Bm such that σm(A) = σn1?1(A)). where σn and σm are the Haar measures on ?Bn and ?Bm, respectively, and A ? Bn is an arbitrary Borel set.  相似文献   

5.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

6.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

7.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

8.
For the variance of stationary renewal and alternating renewal processes Nn(·) the paper establishes upper and lower bounds of the form
?B1?varN8(0,x–Aλx?B2(0<x<∞)
, where λ=EN8(0,1), with constants A, B1 and B2 that depend on the first three moments of the interval distributions for the processes concerned. These results are consistent with the value of the constant A for a general stationary point process suggested by Cox in 1963 [1].  相似文献   

9.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

10.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

11.
If A and B are C1-algebras there is, in general, a multiplicity of C1-norms on their algebraic tensor product AB, including maximal and minimal norms ν and α, respectively. A is said to be nuclear if α and ν coincide, for arbitrary B. The earliest example, due to Takesaki [11], of a nonnuclear C1-algebra was Cl1(F2), the C1-algebra generated by the left regular representation of the free group on two generators F2. It is shown here that W1-algebras, with the exception of certain finite type I's, are nonnuclear.If C1(F2) is the group C1-algebra of F2, there is a canonical homomorphism λl of C1(F2) onto Cl1(F2). The principal result of this paper is that there is a norm ζ on Cl1(F2) ⊙ Cl1(F2), distinct from α, relative to which the homomorphism λ ⊙ λl: C1(F2) ⊙ C1(F2) → Cl1(F2) ⊙ Cl1(F2) is bounded (C1(F2) ⊙ C1(F2) being endowed with the norm α). Thus quotients do not, in general, respect the norm α; a consequence of this is that the set of ideals of the α-tensor product of C1-algebras A and B may properly contain the set of product ideals {I ? B + A ? J: I ? A, J ? B}.Let A and B be C1-algebras. If A or B is a W1-algebra there are on AB certain C1-norms, defined recently by Effros and Lance [3], the definitions of which take account of normality. In the final section of the paper it is shown by example that these norms, with α and ν, can be mutually distinct.  相似文献   

12.
In “The Slimmest Geometric Lattices” (Trans. Amer. Math. Soc.). Dowling and Wilson showed that if G is a combinatorial geometry of rank r(G) = n, and if X(G) = Σμ(0, x)λr ? r(x) = Σ (?1)r ? kWkλk is the characteristic polynomial of G, then
wk?rk+nr?1k
Thus γ(G) ? 2r ? 1 (n+2), where γ(G) = Σwk. In this paper we sharpen these lower bounds for connected geometries: If G is connected, r(G) ? 3, and n(G) ? 2 ((r, n) ≠ (4,3)), then
wi?ri + nri+1 for i>1; w1?r+nr2 ? 1;
|μ| ? (r? 1)n; and γ ? (2r ? 1 ? 1)(2n + 2). These bounds are all achieved for the parallel connection of an r-point circuit and an (n + 1)point line. If G is any series-parallel network, r(G) = r(G?) = 4, and n(G) = n(G?) = 3 then (w1(G))4t-G ? (w1(G?)) = (8, 20, 18, 7, 1). Further, if β is the Crapo invariant,
β(G)=dX(G)(1),
then β(G) ? max(1, n ? r + 2). This lower bound is achieved by the parallel connection of a line and a maximal size series-parallel network.  相似文献   

13.
Let X be a Banach space, let B be the generator of a continuous group in X, and let A = B2. Assume that D(Ar) is dense in X for r an arbitrarily large positive integer and that a and b are non-negative reals. Solution representations are developed for the abstract differential equation
(D2t + bt Dt ? A) · (D2t + at Dt ? A) u(t) = 0, t > 0
corresponding to initial conditions of the form: (i) u(0+) = φ, u(j)(0+) = 0, j = 1, 2, 3 and (ii) u2(0+) = φ, uj(0+) = 0, j = 0, 1, 3 (with φD(Ar)) for all choices of a and b.  相似文献   

14.
Let k and r be fixed integers such that 1 < r < k. Any positive integer n of the form n = akb, where b is r-free, is called a (k, r)-integer. In this paper we prove that if Qk,r(x) denotes the number of (k, r)-integers ≤ x, then Qk,r(x) = xζ(k)ζ(r) + Δk,r(x), where Δk,r(x) = O(x1rexp [?Blog35x (log log x)?15]), B being a positive constant depending on r and the O-estimate is uniform in k. On the assumption of the Riemann hypothesis, we improve the above order estimate of Δk,r(x) and prove that
1x1αδk,r(t)dt=0(x1kω(x))or0(x3/(4r+1)ω(x))
, according as k ≤ (4r + 1)3 or k > (4r + 1)3, where ω(x) = exp [B log x(log log x)?1].  相似文献   

15.
Let An(ω) be the nxn matrix An(ω)=(aij with aijij, 0?i,j?n?1, ωn=1. For n=rs we show
An(w)PsrPrs0s?1Ar(ws)Psr{Trs(w)}0r?1As(wr)
=(Ar?Is)Tsr(Ir?As). When r and s are relatively prime this identity implies a wide class of identities of the form PAn(ω)QT=Ar(ωαs)?As(ωβr). The matrices Psr, Prs, P, and Q are permutation matrices corresponding to the “data shuffling” required in a computer implementation of the FFT, and Tsr is a diagonal matrix whose nonzeros are called “twiddle factors.” We establish these identities and discuss their algorithmic significance.  相似文献   

16.
Let A be a nonnegative square matrix, and let D be a diagonal matrix whose iith element is (Ax)ixi, where x is a (fixed) positive vector. It is shown that the number of final classes of A equals n?rank(A?D). We also show that null(A?D) = null(A?D)2, and that this subspace is spanned by a set of nonnegative elements. Our proof uses a characterization of nonnegative matrices having a positive eigenvector corresponding to their spectral radius.  相似文献   

17.
For any fixed 0 < π ? 2π, let D(π) be the family of all holomorphic functions in the unit disk Δ which satisfy (i)f(0) = 0 and (ii) lim infz → π¦f(z)¦ ? 1, for all π lying on some arc Af ? with arclength ¦Af¦ ? π. We show that for each 0 < ε < 1, there is a π0 > 0 such that for any f?D(π) with π < π0, the Bloch and Doob norm respectively satisfy
6f6B= supz?Δ |f′(z)| (1?|z|2) > 2(1 ? ε) log1+cos(p21?cos(p2?1
6f6D= supz?Δ |f′(z)| (1?|z|) > (1 ? ε) log11?cos(p2?1
These two estimates do not hold with ε = 0.  相似文献   

18.
The compactness method to weighted spaces is extended to prove the following theorem:Let H2,s1(B1) be the weighted Sobolev space on the unit ball in Rn with norm
6ν612,s=B1 (1rs)|ν|2 dx + ∫B1 (1rs)|Dν|2 dx.
Let n ? 2 ? s < n. Let u? [H2,s1(B1) ∩ L(B1)]N be a solution of the nonlinear elliptic system
B11rs, i,j=1n, h,K=1N AhKij(x,u) DiuhDK dx=0
, ψ ? ¦C01(B1N, where ¦Aijhk¦ ? L, Aijhk are uniformly continuous functions of their arguments and satisfy:
|η|2 = i=1n, j=1Nij|2 ? i,j=1n, 1rs, h,K=1N AhKijηihηik,?η?RNn
. Then there exists an R1, 0 < R1 < 1, and an α, 0 < α < 1, along with a set Ω ? B1 such that (1) Hn ? 2(Ω) = 0, (2) Ω does not contain the origin; Ω does not contain BR1, (3) B1 ? Ω is open, (4) u is Lipα(B1 ? Ω); u is LipαBR1.  相似文献   

19.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

20.
Let etSande?tT be (C0)-semigroups on a Banach space X. Their tensor product L(t) is defined by L(t)A = etSAetT (A?B(X)) and has the generator Δ formally of the form ΔA = SA ? AT. Under the assumption that {L(t); t ? 0} is bounded, we investigate the Abel limit and the Cesàro limit of L(t)A at ∞. If gWsu] denotes the set of operators A for which the Abel limit Ps(A) [resp. Pu(A)] exists in the strong [resp. uniform] operator topology, then
N(Δ)⊕R(Δ) = ωu ? ωs ? N(Δ) + R(Δ)
and the limit defines a projection Ps[Pu] from Ωs [resp. Ωu] onto N(Δ) with N(Δ) with R(Δ) = N(Pu) ? N(Pu) ? R(Δ). If, in addition, S and T are Hilbert space normal operators such that gq(S) ∩ gq(T) ≠ φ, then Ωu contains all compact operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号