首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gradient algorithm is developed for the optimal design of discrete passive dampers in the vibration control of a class of flexible (distributed parameter) systems. A complete mathematical development is presented for slender beams in flexural vibration. The algorithm systematically seeks to make the modal damping and natural frequencies of the system reach a set of preassigned values. Single damper and the two damper control examples indicate that the proposed algorithm converges faster than the Davison method used in reference [1] for those cases.  相似文献   

2.
Some existing formulations for the shear coefficient in Timoshenko's beam theory are discussed, especially through evaluation of the accuracy to which natural frequencies of simply supported, prismatic, thin walled beams can be obtained. The main conclusion drawn is that if a consistent expression for the shear coefficient, such as those given by Cowper [1] or Stephen [2], is used in Timoshenko's beam theory, then very high accuracies can be expected for the natural frequencies, even for wavelengths of the same magnitude as the transverse dimension of the beam. It is noted that no reduction of the moment of inertia due to shear lag effects should be made as these effects are included in the consistent formulas for the shear coefficient. Finally, some apparently paradoxical results indicating that a reduction in shear stiffness occurs in rare cases if more material is added to a section are discussed and explained as resulting from the use of integrated rather than pointwise deflection measures in the derivation of consistent shear coefficient expressions. The results are discussed in the light of the importance of the shear stiffness of the hull girder in ship hull vibration analysis.  相似文献   

3.
This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.  相似文献   

4.
The natural frequencies and mode shapes of a number of box beams are calculated by using the finite element displacement method. The structures are considered as assemblages of plates, and in general it is necessary to consider both the in-plane and transverse motion of the plates. A method of representing these two types of motion in the analysis of the vibrations of box beams is presented. A number of box beams of varying sectional parameters are analysed as systems of plates and the results compared with the predictions of Euler and Timoshenko beam theories. The comparisons show that for short beams constructed of thin plates, the new method can successfully represent the localized plate deformations, which cannot be described by beam theory.  相似文献   

5.
This study provides a simple moving-grid scheme which is based on a modified conservative form of the incompressible Navier–Stokes equations for flow around a moving rigid body. The modified integral form is conservative and seeks the solution of the absolute velocity. This approach is different from previous conservative differential forms [1], [2], [3] whose reference frame is not inertial. Keeping the reference frame being inertial results in simpler mathematical derivation to the governing equation which includes one dyadic product of velocity vectors in the convective term, whereas the previous [2], [3] needs to obtain the time derivative with respect to non-inertial frames causing an additional dyadic product in the convective term. The scheme is implemented in a second-order accurate Navier–Stokes solver and maintains the order of the accuracy. After this verification, the scheme is validated for a pitching airfoil with very high frequencies. The simulation results match very well with the experimental results [4], [5], including vorticity fields and a net thrust force. This airfoil simulation also provides detailed vortical structures near the trailing edge and time-evolving aerodynamic forces that are used to investigate the mechanism of the thrust force generation and the effects of the trailing edge shape. The developed moving-grid scheme demonstrates its validity for a rapid oscillating motion.  相似文献   

6.
This paper concerns with the effect of small scale on the vibrational characteristics of multi-walled carbon nanotubes (MWCNTs) modeled as multiple nonlocal Euler beams. In this model, each nanotube interacts with its neighbors through the van der Waals force. Analytical approaches are expressed to solve coupled governing equations of the motion. Results for double- and five-walled carbon nanotubes (DWCNTs and FWCNTs), as two specific examples of MWCNTs, are presented for various boundary conditions. Then, effect of small scale on the natural and intertube resonant frequencies and their associated amplitude ratios are discussed. Besides the effect of small scale, the effect of end conditions on the vibrational properties and a comparison between the methods are provided. Natural and intertube frequencies reduce with the introduction of nonlocal parameter. However, reduction of intertube frequencies is less than the natural frequencies. Moreover, it is provided that the effect of small scale stiffens the van der Waals force and causes MWCNTs to behave similar to a single beam in high values of nonlocal parameter. Also, this study reveals that in high mode numbers, natural frequencies of a multiple classical Euler beams system tend to frequencies of its constituent beams.  相似文献   

7.
Wong [14] introduced equations of motion for a spin 0 particle in a Yang-Mills field which was widely accepted among physicists. It is shown that these are equivalent to the various mathematical formulations for the motion of such particles as given by the Kaluza-Klein formulation of Kerner [4], and those of Sternberg [11], and Weinstein [12]. In doing this, we show that Sternberg's space is, in a natural way, a symplectic leaf of a reduced Poisson manifold and relations to a construction of Kummer's [5] for dynamics on the cotangent bundle of a principle bundle are clarified.  相似文献   

8.
The literature regarding the free vibration analysis of single-span beams carrying a number of spring-mass systems is plenty, but that of multi-span beams carrying multiple spring-mass systems is fewer. Thus, this paper aims at determining the “exact” solutions for the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple spring-mass systems. Firstly, the coefficient matrices for an intermediate pinned support, an intermediate spring-mass system, left-end support and right-end support of a uniform beam are derived. Next, the numerical assembly technique for the conventional finite element method is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the last overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. In this paper, the natural frequencies and associated mode shapes of the vibrating system are obtained directly from the differential equation of motion of the continuous beam and no other assumptions are made, thus, the last solutions are the exact ones. The effects of attached spring-mass systems on the free vibration characteristics of the 1-4-span beams are studied.  相似文献   

9.
In this paper, we explain the computation we made in collaboration with M. Talon and C.M. Viallet of anomalous terms in gauge theory [1], [2], [3]. We relate our constructions to standard mathematical constructions. The paper is self-contained in the sense that all mathematical concepts and results we use are explained.  相似文献   

10.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

11.
Abstract

The experimental observables of a vibrational spectrum are depicted either in the form of their positions, i.e., frequency relating the energy required in a given quantum transition, or as the intensities of absorption and scattering related to their transition probabilities. Expressed in terms of molecular parameters, the frequencies depend on the geometry, atomic masses, and intramolecular forces [11 while the band intensities [2] reflect changes in dipole moment (infrared) or polarizabilities (Raman) which are caused during a vibrational displacement and are related to movement of electronic charges within the individual bonds. The mathematical basis for determining vibrational frequencies was well established as early as 1940 by Wilson [3] and others [4, 51. Applying the interpretation of vibrational spectra has become routine in the multitudinous disciplines of chemical literature [6–26]. Accounts of infrared and Raman spectra [27–29], collection of literature [30], and reasonable sets of intramolecular forces [31, 321 are now available for the prediction of normal frequencies of hydrocarbons.  相似文献   

12.
Galerkin methods for natural frequencies of high-speed axially moving beams   总被引:1,自引:0,他引:1  
In this paper, natural frequencies of planar vibration of axially moving beams are numerically investigated in the supercritical ranges. In the supercritical transport speed regime, the straight equilibrium configuration becomes unstable and bifurcate in multiple equilibrium positions. The governing equations of coupled planar is reduced to two nonlinear models of transverse vibration. For motion about each bifurcated solution, those nonlinear equations are cast in the standard form of continuous gyroscopic systems by introducing a coordinate transform. The natural frequencies are investigated for the beams via the Galerkin method to truncate the corresponding governing equations without nonlinear parts into an infinite set of ordinary-differential equations under the simple support boundary. Numerical results indicate that the nonlinear coefficient has little effects on the natural frequency, and the three models predict qualitatively the same tendencies of the natural frequencies with the changing parameters and the integro-partial-differential equation yields results quantitatively closer to those of the coupled equations.  相似文献   

13.
The problem of calculating the natural frequencies of beams with multiple cracks and frames with cracked beams is studied. The natural frequencies are obtained using a new method in which a rotational spring model is used to represent the cracks. For beams, dynamic stiffness matrices of order 4 are obtained in a recursive manner, according to the number of cracks, by applying partial Gaussian elimination. The Wittrick–Williams algorithm is used to compute the natural frequencies in the resulting transcendental eigenvalue problem. Published numerical examples for cracked beams are used for validation. The global dynamic stiffness matrix of a frame with multiply cracked members is then assembled. A published two bay frame example is used to evaluate the new method. The effect of changing the location of a crack in a two bay two storey frame is studied numerically, giving insight into the inverse problem of damage detection.  相似文献   

14.
The method of detection of location of crack in beams based on frequency measurements is extended here to short beams, taking into account the effects of shear deformation and rotational inertia through the Timoshenko beam theory and representing the crack by a rotational spring. Methods for solving both forward (determination of frequencies of beams knowing the crack parameters) and inverse (determination of crack location knowing the natural frequencies) problems are included. A method to estimate crack extension from a change in the first natural frequency is presented. Both numerical and experimental studies are given to demonstrate the accuracy of the methods. The accuracy of the results is quite encouraging.  相似文献   

15.
A general procedure for the determination of the natural frequencies and buckling load for a set of beam system under compressive axial loading is investigated using Timoshenko and high-order shear deformation theory. It is assumed that the set beams of the system are simply supported and continuously joined by a Winkler elastic layer. The model of beam includes the effects of axial loading, shear deformation and rotary inertia. In the special case of identical beams, explicit expressions for the natural frequencies and the critical buckling load are determined using a trigonometric method. The influences of the compressive axial loading and the number of beams in the system on the natural frequencies and the critical buckling load are discussed. These results are of considerable practical interest and have wide application in engineering practice of frameworks.  相似文献   

16.
提出了基于光学相干测振(optical coherence vibrometer,OCV)系统的微悬臂梁缺陷检测方法.自搭建的OCV系统最大振动位移量程、最大振动频率分别为2.574 mm和138.5 kHz,应用该系统对含缺陷微悬臂梁-附加质量块耦合结构进行振动测量获得其固有频率,并利用附加质量块对固有频率的影响特性...  相似文献   

17.
Equations of motion for curved beams in a general state of non-uniform initial stresses are derived using the principle of virtual work. The equations are adjusted to a generic expression by using appropriate transformations. The free vibration behaviours of the curved beams subjected to a combination of uniform initial tensile of compressive stresses and uniform initial bending stress are examined. The Galerkin method is employed in obtaining accurate values of free frequencies and initial buckling stresses. The curved beam is assumed to be vibrating in its plane. Natural frequencies and initial buckling stresses for hinged supported curved beams are presented for validation. Effects of arc segment angles, elastic foundation, and initial stresses on the natural frequencies are investigated. Effects of arc segment angles, elastic foundation, and initial bending stresses on the initial buckling stresses are explored in this paper.  相似文献   

18.
During the process of adjusting the ADK-theory for the superstrong laser fields we took some part in few past years [1, 7, 8], mainly in analyzing the consequences of the influence of atom charge Z, being changed during the ionization of atoms, on the transition rate of ejected electrons. In this activity we introduced a slightly changed variant of ADK-theory [3], which we began to call corrected ADK-theory, cADK, for short [8]. Now, cADK-theory is not experimentally challenged yet, but it’s results are in accordance with many predictions [see, for instance 1, 7–9]. In present work, we used calculations of modified ionization potential of atom E i , in order to improve formula for transition rate W cADK. As we already discussed the transition rate dependence on the atom charges state Z [1], now we explained better the differences of the two variants of the theory, ADK and cADK. Of course, our predictions need experimental check.  相似文献   

19.
In general, the exact solutions for natural frequencies and mode shapes of non-uniform beams are obtainable only for a few types such as wedge beams. However, the exact solution for the natural frequencies and mode shapes of an immersed wedge beam is not obtained yet. This is because, due to the “added mass” of water, the mass density of the immersed part of the beam is different from its emerged part. The objective of this paper is to present some information for this problem. First, the displacement functions for the immersed part and emerged part of the wedge beam are derived. Next, the force (and moment) equilibrium conditions and the deflection compatibility conditions for the two parts are imposed to establish a set of simultaneous equations with eight integration constants as the unknowns. Equating to zero the coefficient determinant one obtains the frequency equation, and solving the last equation one obtains the natural frequencies of the immersed wedge beam. From the last natural frequencies and the above-mentioned simultaneous equations, one may determine all the eight integration constants and, in turn, the corresponding mode shapes. All the analytical solutions are compared with the numerical ones obtained from the finite element method and good agreement is achieved. The formulation of this paper is available for the fully or partially immersed doubly tapered beams with square, rectangular or circular cross-sections. The taper ratio for width and that for depth may also be equal or unequal.  相似文献   

20.
CRACK DETECTION IN BEAM-TYPE STRUCTURES USING FREQUENCY DATA   总被引:1,自引:0,他引:1  
A practical method to non-destructively locate and estimate size of a crack by using changes in natural frequencies of a structure is presented. First, a crack detection algorithm to locate and size cracks in beam-type structures using a few natural frequencies is outlined. A crack location model and a crack size model are formulated by relating fractional changes in modal energy to changes in natural frequencies due to damage such as cracks or other geometrical changes. Next, the feasibility and practicality of the crack detection scheme are evaluated for several damage scenarios by locating and sizing cracks in test beams for which a few natural frequencies are available. By applying the approach to the test beams, it is observed that crack can be confidently located with a relatively small localization error. It is also observed that crack size can be estimated with a relatively small size error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号