首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
Asymptotic singular solutions of the HRR type are presented for anti-plane shear cracks in ductile crystals. These are assumed to undergo Taylor hardening with a power-law relation between stress and strain at sufficiently large strain. Results are given for several crack orientations in fcc and bcc crystals. The neartip region divides into angular sectors which are the maps of successive flat segments and vertices on the yield locus. Analysis is simplified by use of new general integrals of crack tip singular fields of the HRR type. It is conjectured that the single crystal HRR fields are dominant only over part of the plastic region immediately adjacent to the crack tip, even at small scale yielding, and that their domain of validity vanishes as the perfectly plastic limit is approached. This follows from the fact that while in the perfectly plastic limit the HRR stress states approach the correct discontinuous distributions of the complete elasticideally plastic solutions for crystals (Rice and Nikolic, J. Mech. Phys. Solids33, 595 (1985)), the HRR displacement fields in that limit remain continuous. Instead, the complete elastic-ideally plastic solutions have discontinuous displacements along planar plastic regions emanating from the tip in otherwise elastically stressed material. The approach of the HRR stress fields to their discontinuous limiting distributions is illustrated in graphical plots of results. A case examined here of a fcc crystal with a crack along a slip plane is shown to lead to a discontinuous near-tip stress state even in the hardening regime.Through another limiting process, the asymptotic solution for the near-tip field for an isotropic material is also derived from the present single crystal framework.  相似文献   

2.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

3.
Plane strain plastic yielding at a crack tip has been represented by edge dislocations with Burgers vectors parallel to symmetrical planes inclined at 70° and 45° to the plane of the crack. The plastic displacement and the stresses near the crack tip were calculated by a numerical method and the effect of a reduction in applied stress was determined. Removal of the whole or a part of the initial load produces reverse shear in regions of the slip band nearest the crack tip. The amount of reverse shear depends only on the reduction in the load and not on its initial value. The reverse shear is associated with the presence of negative dislocations and the stresses near the crack tip may become compressive even though the applied (remote) stress is still tensile. The degree and extent of compression depends on the reduction in applied stress and on its original value. It is argued that the residual compressive stresses produced under fluctuating loads may produce crack closure and crack arrest. The effect of residual plasticity in a slip band left behind a growing crack has been estimated. It is shown that after an overload the excess residual plasticity opposing crack opening rises to a maximum value when the crack tip has advanced some distance from the point where the overload was applied.  相似文献   

4.
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios. The project supported by the National Natural Science Foundation of China  相似文献   

5.
For a crack with steady growth under anti-plane shear, analysis shows a primary plastic zone included in an angle of ±19.7° ahead of the crack tip, and two very thin secondary (reverse) plastic zones along the crack flanks, each included in an angle of 0.37°. Numerical solutions give the shape of the plastic zones which determine the active and residual plastic strains, and give the crack tip displacement, which is approximately 0.07 of that for monotonic loading without growth. The length of the primary plastic zone is almost the same as that without growth, but the thickness is about 3/5 as great. Coupled with ductile fracture criteria, the present results predict initially stable crack growth, whereas analyses based on the simplification of yielding on just one plane predict unstable fracture immediately following initiation.  相似文献   

6.
Plane strain slip line fields, in which plasticity does not fully surround the crack tip have been developed for mode I and mixed mode I\II cracks under contained yielding. Analytical solutions have been assembled using slip line theory for the plastic sectors and semi-infinite wedge solutions for the elastic sectors. These solutions are compared with finite element solutions based on modified boundary layer formulations. The analytical solutions agree well with numerical solutions, and form a family of fields with incomplete plasticity around the crack tip.  相似文献   

7.
The near-tip field of a mode I crack growing steadily under plane strain conditions is studied. A key issue is whether strong discontinuities can propagate under dynamic conditions. Theories which impose rather restrictive assumptions on the structure of an admissible deformation path through a dynamically propagating discontinuity have been proposed recently. Asymptotic solutions for dynamic crack growth, based on such theories, do not contain any discontinuities. In the present work a broader family of deformation paths is considered and we show that a discontinuity can propagate dynamically without violating any of the mechanical constitutive relations of the material. The proposed theory for the propagation of strong discontinuities is corroborated by very detailed finite element calculations. The latter shows a plane of strong discontinuity emanating from the crack tip (with its normal pointing in the direction of crack advance) and moving with the tip. Elastic unloading ahead of and/or behind the plane of discontinuity and behind the crack tip have also been observed.The numerical investigation is performed within the framework of a boundary layer formulation whereby the remote loading is fully specified by the first two terms in the asymptotic solution of the elasto-dynamic crack tip field, characterized by K1, and T. It is shown that the family of near-tip fields, associated with a given crack speed, can be arranged into a one-parameter field based on a characteristic length, Lg, which scales with the smallest dimension of the plastic zone. This extends a previous result for quasi-static crack growth.  相似文献   

8.
The asymptotic stress and strain fields near the tip of a crack which propagates dynamically in a rate-sensitive solid are obtained under anti-plane shear and plane strain conditions. The problem is formulated within the context of a small-strain theory for a solid whose mechanical behavior under high strain rates is described by an elastic-viscoplastic constitutive relation. It is shown that, if the stresses are singular at the crack-tip, the viscoplastic relation is equivalent asymptotically to an elastic-non-linear viscous relation. Furthermore, for a certain range of the material parameter which characterizes the rate-sensitivity of the material, the elastic strain-rates near the propagating crack tip are shown to have the same asymptotic radial dependence near the propagating crack-tip as the inelastic strain-rates. This determines the order of the stress singularity uniquely. The governing equations for anti-plane shear and plane strain are then derived. The numerical results for the stress and strain fields are presented for anti-plane shear and plane strain. For the present model, the results suggest that under small-scale yielding conditions, there exists a minimum velocity for stable steady crack propagation. The implication that a terminal velocity for a running crack may exist is also discussed.  相似文献   

9.
赵雪芬  李星 《力学季刊》2015,36(4):645-654
利用复变函数方法研究了一维六方准晶中星形静态裂纹和运动裂纹的反平面剪切问题,得到了星形裂纹尖端处应力强度因子和动应力强度因子的解析解.当裂纹条数给定时,由此可得到直线裂纹,Griffith裂纹,共点均匀分布三裂纹,对称十字形裂纹,米字型裂纹(对称八裂纹)静力学和动力学问题的解析解.当k=4时,用数值算例讨论了声子场-相位子场耦合系数和裂纹运动速度对动应力强度因子的影响.当速度趋于0时,运动裂纹的解可以退化为静态裂纹的解.  相似文献   

10.
IntroductionDuetotheintrinsicelectro_mechanicalcouplingbehavior,piezoelectricmaterialsareveryusefulinelectronicdevices.However,mostpiezoelectricmaterialsarebrittlesuchasceramicsandcrystals.Therefore ,piezoelectricmaterialshaveatendencytodevelopcriticalcracksduringthemanufacturingandthepolingprocesses.So ,itisimportanttostudytheelectro_elasticinteractionandfracturebehaviorsofpiezoelectricmaterials.Theincreasingattentiontothestudyofcrackproblemsinpiezoelectricmaterialshasledtoalotofsignificantw…  相似文献   

11.
In this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field depends on the crack length, the distance between two cracks, the parameter describing the functionally graded materials and the lattice parameter of the materials.  相似文献   

12.
Mechanism of quasi-static crack branching in brittle solids has been analyzed by a modified displacement discontinuity method. It has been assumed that the pre-existing cracks in brittle solids may propagate at the crack tips due to the initiation and propagation of the kink (or wing) cracks. The originated wing cracks will act as new cracks and can be further propagated from their tips according to the linear elastic fracture mechanics (LEFM) theory. The kink displacement discontinuity formulations (considering the linear and quadratic interpolation functions) are specially developed to calculate the displacement discontinuities for the left and right sides of a kink point so that the first and second mode kink stress intensity factors can be estimated. The crack tips are also treated by boundary displacement collocation technique considering the singularity variation of the displacements and stresses near the crack tip. The propagating direction of the secondary cracks can be predicted by using the maximum tangential stress criterion. An iterative algorithm is used to predict the crack propagating path assuming an incremental increase of the crack length in the predicted direction (straight and curved cracks have been treated). The same approach has been used for estimating the crack propagating direction and path of the original and wing cracks considering the special crack tip elements. Some example problems are numerically solved assuming quasi-static conditions. These results are compared with the corresponding experimental and numerical results given in the literature. This comparison validates the accuracy and applicability of the proposed method.  相似文献   

13.
A computational model was developed to numerically analyse fatigue striations. The inclined strip yield model with continuous distributions of infinitesimal dislocations was utilized to express the crack tip plasticity in this model. The fatigue crack tip blunting process was approximated by sequential activation of two slip lines under loading, and crack closure during unloading was taken into account. The plastic zone at a growing fatigue crack tip at the maximum load was independent of the crack growth up to ten cycles while the reversed plastic zone decreased in a size to one twentieth of that at the maximum load as the crack grew. The ratio of these plastic zone sizes and also the crack tip opening displacement were quite different from the simple prediction by J.R. Rice for a stationary crack. The computed striation spacings were compared with the observed ones and moderate agreement between them obtained.  相似文献   

14.
We study the deformation of a crack between a soft elastomer and a rigid substrate with finite interfacial slippage. It is assumed that slippage occurs when the interfacial shear traction exceeds a threshold. This leads to a slip zone ahead of the crack tip where the shear traction is assumed to be equal to the constant threshold. We perform asymptotic analysis and determine closed-form solutions describing the near-tip crack opening displacement and the corresponding stress distributions. These solutions are consistent with numerical results based on finite element analysis. Our results reveal that slippage can significantly affect the deformation and stress fields near the tip of the interface crack. Specifically, depending on the direction of slippage, the crack opening profile may appear more blunted or sharpened than the parabola arising from for the case of zero interfacial shear traction or free slippage. The detailed crack opening profile is determined by the constant shear traction in the slip zone. More importantly, we find that the normal stress perpendicular to the interface can increase or decrease when slippage occurs, depending on the direction of slippage and the shear traction in the slip zone.  相似文献   

15.
Elastic–plastic solutions of an anti-plane crack in an infinite body are used in conjunction with a continuum damage model to describe the conditions necessary for the onset of crack instability, fatigue crack propagation due to cyclic loading, and rates of crack growth due to time dependent events. A power law relates the stress to the strain of the material. The damage, which invokes nucleation, growth and coalescence of microvoids due to elevated strain, is confined to the plastic zone surrounding the crack tip. For applied loading below the yield stress, the small-scale and large-scale yielding solutions are used to determine the influence of strain hardening on crack instability and failure. Crack growth due to cyclic loading and time-dependent deformations are studied using the small-scale yielding solution of the deformation theory of plasticity.  相似文献   

16.
In this paper we develop closed form solutions for anti-plane mechanical and in-plane electric and magnetic fields for two collinear cracks in magneto-electro-elastic layer of finite thickness under the conditions of permeable crack faces using integral transform method. The anti-plane mechanical shear or displacement and in-plane electrical and magnetic loading are applied to the top and bottom surfaces of the layer for the two cases considered. Expressions for shear stresses, electric displacements and magnetic inductions in the vicinity of the cracks are derived as well as intensity factors for two cracks in magneto-electro-elastic layer. Numerical results for stress intensity factors and energy release rate are shown graphically.  相似文献   

17.
In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material plate under anti-plane shear waves is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved using the Schmidt method. This method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The project supported by the Natural Science Foundation of Heilongjiang Province and the National Natural Science Foundation of China(10172030, 50232030)  相似文献   

18.
In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the dynamic load.  相似文献   

19.
不连续体的数值模拟尤其是动态裂纹的追踪问题一直是工程界研究的热点和难点问题。无网格方法仅仅需要结点信息,非常适合于求解这类问题。基于单位分解思想,在移动最小二乘近似函数(MLS)中根据裂纹面的不连续位移增加一个Heaviside函数,在裂尖则增加四个扩展函数描述渐进裂纹位移场;应用Galerkin方法推导了平衡方程的离散线性方程,并给出了求解裂纹问题应力强度因子的计算公式。与其他类型的扩展无网格相比,在裂尖处近似函数不需要使用可视准则,很容易生成r1/2奇异;另一个优势是影响域并没有因为裂纹的存在而改变,不会降低方程的稀疏性,求解效率较高。数值算例表明,该方法能方便有效地模拟不连续问题,具有十分广阔的应用空间。  相似文献   

20.
A non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in the piezoelectric materials plane under anti-plane shear waves for the permeable crack surface boundary conditions. Unlike the classical elasticity solution, a lattice parameter enters into the problem that make the stresses and the electric displacements finite at the crack tip. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and electric displacement near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations in which the unknown variable is the jump of the displacement across the crack surface. The solutions are obtained by means of the Schmidt method. Crack bifurcation is predicted using the strain energy density criterion. Minimum values of the strain energy density functions are assumed to coincide with the possible locations of fracture initiation. Bifurcation angles of ±5° and ±175° are found. The result of possible crack bifurcation was not expected before hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号