首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

2.
Let V be a set of n points in Rk. Let d(V) denote the diameter of V, and l(V) denote the length of the shortest circuit which passes through all the points of V. (Such a circuit is an “optimal TSP circuit”.) lk(n) are the extremal values of l(V) defined by lk(n)=max{l(V)|VVnk}, where Vnk={V|V?Rk,|V|=n, d(V)=1}. A set VVnk is “longest” if l(V)=lk(n). In this paper, first some geometrical properties of longest sets in R2 are studied which are used to obtain l2(n) for small n′s, and then asymptotic bounds on lk(n) are derived. Let δ(V) denote the minimal distance between a pair of points in V, and let: δk(n)=max{δ(V)|VVnk}. It is easily observed that δk(n)=O(n?1k). Hence, ck=lim supn→∞δk(n)n1k exists. It is shown that for all n, ckn?1k≤δk(n), and hence, for all n, lk(n)≥ ckn1?1k. For k=2, this implies that l2(n)≥(π212)14n12, which generalizes an observation of Fejes-Toth that limn→∞l2(n)n?12≥(π212)14. It is also shown that lk(n) ≤ [(3?√3)k(k?1)]nδk(n) + o(n1?1k) ≤ [(3?√3)k(k?1)]n1?1k + o(n1?1k). The above upper bound is used to improve related results on longest sets in k-dimensional unit cubes obtained by Few (Mathematika2 (1955), 141–144) for almost all k′s. For k=2, Few's technique is used to show that l2(n)≤(πn2)12 + O(1).  相似文献   

3.
In this paper we studied m×n arrays with row sums nr(n,m) and column sums mr(n,m) where (n,m) denotes the greatest common divisor of m and n. We were able to show that the function Hm,n(r), which enumerates m×n arrays with row sums and column sums nr(m,n) and mr(n,m) respectively, is a polynomial in r of degree (m?1)(n?1). We found simple formulas to evaluate these polynomials for negative values, ?r, and we show that certain small negative integers are roots of these polynomials. When we considered the generating function Gm,n(y) = Σr?0Hm,n(r)yr, it was found to be rational of degree less than zero. The denominator of Gm,n(y) is of the form (1?y)(m?1)(n?1)+3, and the coefficients of the numerator are non-negative integers which enjoy a certain symmetric relation.  相似文献   

4.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

5.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

6.
The Turán number T(n, l, k) is the smallest possible number of edges in a k-graph on n vertices such that every l-set of vertices contains an edge. Given a k-graph H = (V(H), E(H)), we let Xs(S) equal the number of edges contained in S, for any s-set S?V(H). Turán's problem is equivalent to estimating the expectation E(Xl), given that min(Xl) ≥ 1. The following lower bound on the variance of Xs is proved:
Var(Xs)?mmn?2ks?kns?1nk1
, where m = |E(H)| and m = (kn) ? m. This implies the following: putting t(k, l) = limn→∞T(n, l, k)(kn)?1 then t(k, l) ≥ T(s, l, k)((ks) ? 1)?1, whenever sl > k ≥ 2. A connection of these results with the existence of certain t-designs is mentioned.  相似文献   

7.
We consider unique continuation theorems for solution of inequalities ¦Δu(x)¦ ? W(x) ¦u(x)¦ with W allowed to be unbounded. We obtain two kinds of results. One allows W ? Lploc(Rn) with p ? n ? 2 for n > 5, p >13(2n ? 1) for n ? 5. The other requires fW2 to be ?Δ-form bounded for all f ? C0.  相似文献   

8.
Let (Xn)n?N be a sequence of real, independent, not necessarily identically distributed random variables (r.v.) with distribution functions FXn, and Sn = Σi=1nXi. The authors present limit theorems together with convergence rates for the normalized sums ?(n)Sn, where ?: NR+, ?(n) → 0, n → ∞, towards appropriate limiting r.v. X, the convergence being taken in the weak (star) sense. Thus higher order estimates are given for the expression ∝Rf(x) d[F?(n)Sn(x) ? FX(x)] which depend upon the normalizing function ?, decomposability properties of X and smoothness properties of the function f under consideration. The general theorems of this unified approach subsume O- and o-higher order error estimates based upon assumptions on associated moments. These results are also extended to multi-dimensional random vectors.  相似文献   

9.
Real constant coefficient nth order elliptic operators, Q, which generate strongly continuous semigroups on L2(Rk) are analyzed in terms of the elementary generator,
A = (?n)(n2 ? 1)(n!)?1kj = 1?n?xjn
, for n even. Integral operators are defined using the fundamental solutions pn(x, t) to ut = Au and using real polynomials ql,…, qk on Rm by the formula, for q = (ql,…, qk),
(F(t)?)(x) = ∫
Rm
?(x + q(z)) Pn(z, t)dz
. It is determined when, strongly on L2(Rk),
etQ = limj → ∞ Ftjj
. If n = 2 or k = 1, this can always be done. Otherwise the symbol of Q must have a special form.  相似文献   

10.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

11.
We consider two Gaussian measures P1 and P2 on (C(G), B) with zero expectations and covariance functions R1(x, y) and R2(x, y) respectively, where Rν(x, y) is the Green's function of the Dirichlet problem for some uniformly strongly elliptic differential operator A(ν) of order 2m, m ≥ [d2] + 1, on a bounded domain G in Rd (ν = 1, 2). It is shown that if the order of A(2) ? A(1) is at most 2m ? [d2] ? 1, then P1 and P2 are equivalent, while if the order is greater than 2m ? [d2] ? 1, then P1 and P2 are not always equivalent.  相似文献   

12.
It is shown how the cone l(U) of superharmonic functions ?0 on an open set U in Rn, n ? 3, can be recovered from the cone l of superharmonic functions ?0 on the whole of Rn by a process involving the operator of localization associated with U. Actually we treat the more general case where U is open in the Cartan-Brelot fine topology on Rn. As an application we obtain a new proof of a theorem of J. Bliedtner and W. Hansen on uniform approximation by continuous subharmonic functions in open sets containing a given compact set K in Rn.  相似文献   

13.
Let us denote by R(k, ? λ)[R(k, ? λ)] the maximal number M such that there exist M different permutations of the set {1,…, k} such that any two of them have at least λ (at most λ, respectively) common positions. We prove the inequalities R(k, ? λ) ? kR(k ? 1, ? λ ? 1), R(k, ? λ) ? R(k, ? λ ? 1) ? k!, R(k, ? λ) ? kR(k ? 1, ? λ ? 1). We show: R(k, ? k ? 2) = 2, R(k, ? 1) = (k ? 1)!, R(pm, ? 2) = (pm ? 2)!, R(pm + 1, ? 3) = (pm ? 2)!, R(k, ? k ? 3) = k!2, R(k, ? 0) = k, R(pm, ? 1) = pm(pm ? 1), R(pm + 1, ? 2) = (pm + 1)pm(pm ? 1). The exact value of R(k, ? λ) is determined whenever k ? k0(k ? λ); we conjecture that R(k, ? λ) = (k ? λ)! for k ? k0(λ). Bounds for the general case are given and are used to determine that the minimum of |R(k, ? λ) ? R(k, ? λ)| is attained for λ = (k2) + O(klog k).  相似文献   

14.
We study the weight distribution of irreducible cyclic (n, k) codeswith block lengths n = n1((q1 ? 1)/N), where N|q ? 1, gcd(n1,N) = 1, and gcd(l,N) = 1. We present the weight enumerator polynomial, A(z), when k = n1l, k = (n1 ? 1)l, and k = 2l. We also show how to find A(z) in general by studying the generator matrix of an (n1, m) linear code, V1d over GF(qd) where d = gcd (ordn1(q), l). Specifically we study A(z) when V1d is a maximum distance separable code, a maximal shiftregister code, and a semiprimitive code. We tabulate some numbers Aμ which completely determine the weight distributionof any irreducible cyclic (n1(21 ? 1), k) code over GF(2) for all n1 ? 17.  相似文献   

15.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

16.
17.
Let π = (π(1), π(2),…, π(n)) be a permutation on {1, 2, …, n}. A succession (respectively, 1-succession) in π is any pair π(i), π(i + 1), where π(i + 1) = π(i) + 1 (respectively, π(i + 1) ≡ π(i) + 1 (mod n)), i = 1, 2, …, n ? 1. Let R(n, k) (respectively, R1(n, k)) be the number of permutations with k successions (respectively, 1-successions). In this note we determine R(n, k) and R1(n, k). In addition, these notions are generalized to the case of circular permutations, where analogous results are developed.  相似文献   

18.
The authors consider irreducible representations π ? N? of a nilpotent Lie group and define a Fourier transform for Schwartz class (and other) functions φ on N by forming the kernels Kφ(x, y) of the trace class operations πφ = ∝Nφ(n)πndn, regarding the π as modeled in L2(Rk) for all π in general position. For a special class of groups they show that the models, and parameters λ labeling the representations in general position, can be chosen so the joint behavior of the kernels Kφ(x, y, λ) can be interpreted in a useful way. The variables (x, y, λ) run through a Zariski open set in Rn, n = dim N. The authors show there is a polynomial map u = A(x, y, λ) that is a birational isomorphism A: Rn → Rn with the following properties. The Fourier transforms F1φ = Kφ(x, y, λ) all factor through A to give “rationalized” Fourier transforms (u) such that ° A = F1φ. On the rationalized parameter space a function f(u) is of the form Fφ = f ? f is Schwartz class on Rn. If polynomial operators T?P(N) are transferred to operators T? on Rn such that F(Tφ) = T?(Fφ), P(N) is transformed isomorphically to P(Rn).  相似文献   

19.
In “The Slimmest Geometric Lattices” (Trans. Amer. Math. Soc.). Dowling and Wilson showed that if G is a combinatorial geometry of rank r(G) = n, and if X(G) = Σμ(0, x)λr ? r(x) = Σ (?1)r ? kWkλk is the characteristic polynomial of G, then
wk?rk+nr?1k
Thus γ(G) ? 2r ? 1 (n+2), where γ(G) = Σwk. In this paper we sharpen these lower bounds for connected geometries: If G is connected, r(G) ? 3, and n(G) ? 2 ((r, n) ≠ (4,3)), then
wi?ri + nri+1 for i>1; w1?r+nr2 ? 1;
|μ| ? (r? 1)n; and γ ? (2r ? 1 ? 1)(2n + 2). These bounds are all achieved for the parallel connection of an r-point circuit and an (n + 1)point line. If G is any series-parallel network, r(G) = r(G?) = 4, and n(G) = n(G?) = 3 then (w1(G))4t-G ? (w1(G?)) = (8, 20, 18, 7, 1). Further, if β is the Crapo invariant,
β(G)=dX(G)(1),
then β(G) ? max(1, n ? r + 2). This lower bound is achieved by the parallel connection of a line and a maximal size series-parallel network.  相似文献   

20.
Explicit and asymptotic solutions are presented to the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + min1 ? t ? n(αM(t) + βM(n + 1 ? t)) for the cases (1) α + β < 1, log2αlog2β is rational, and g(n) = δnI. (2) α + β > 1, min(α, β) > 1, log2αlog2β is rational, and (a) g(n) = δn1, (b) g(n) = 1. The general form of this recurrence was studied extensively by Fredman and Knuth [J. Math. Anal. Appl.48 (1974), 534–559], who showed, without actually solving the recurrence, that in the above cases M(n) = Ω(n1 + 1γ), where γ is defined by α + β = 1, and that limn → ∞M(n)n1 + γ does not exist. Using similar techniques, the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + max1 ? t ? n(αM(t) + βM(n + 1 ? t)) is also investigated for the special case α = β < 1 and g(n) = 1 if n is odd = 0 if n is even.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号