首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic properties of double perovskite compounds Ba2HoRuO6 and Ba2HoIrO6 have been reported. Powder X-ray and neutron diffraction measurements show that these compounds have a cubic perovskite-type structure with the space group and the 1:1 ordered arrangement of Ho3+ and Ru5+ (or Ir5+) over the 6-coordinate B sites. Results of the magnetic susceptibility and specific heat measurements show that Ba2HoRuO6 exhibits two magnetic anomalies at 22 and 50 K. Analysis of the temperature dependence of magnetic specific heat indicates that the anomaly at 50 K is due to the antiferromagnetic ordering of Ru5+ ions and that the anomaly at 22 K is ascribable to the magnetic interaction between Ho3+ ions. Neutron diffraction data collected at 10 and 35 K show that the Ba2HoRuO6 has a long range antiferromagnetic ordering involving both Ho3+ and Ru5+ ions. Each of their magnetic moments orders in a Type I arrangement and these magnetic moments are anti-parallel in the ab-plane with each other. The magnetic moments are aligned along the c-direction. On the other hand, Ba2HoIrO6 is paramagnetic down to 1.8 K.  相似文献   

2.
A series of perovskite phases have been prepared from the appropriate carbonates and oxides by heating under reducing conditions at temperatures up to 1300 °C. Complete ordering between ErO6 and MoO6 octahedra and a disordered distribution of Sr2+ and Ba2+ occur in all compounds. Neutron powder diffraction experiments show that the substitution of Sr2+ into Ba2ErMoO6 introduces a progressive reduction in symmetry from Fm3¯m (x=0) to I4/m (x=0.5, 0.8) to P21/n (x=1.25, 1.75, 2.0). Magnetic susceptibility measurements indicate that all of these compounds show Curie-Weiss paramagnetism and that for x<1.25 this behaviour persists down to 2 K. The monoclinically distorted compounds show magnetic transitions at low temperature and neutron diffraction has confirmed the presence of long-range antiferromagnetic order below 2.5 and 4 K in Ba0.25Sr1.75ErMoO6 and Sr2ErMoO6, respectively. Ba0.75Sr1.25ErMoO6, Ba0.25Sr1.75ErMoO6 and Sr2ErMoO6 do not undergo structural distortion on cooling from room temperature.  相似文献   

3.
Solid-state reaction between SrCO3, Cr2O3 and SrF2 has produced the apatite phase Sr10(CrO4)6F2 and Sr2CrO4 which adopts the K2NiF4-type structure. The reaction outcome was very sensitive to the heating rate with rapid rise times favouring the formation of Sr2CrO4, which has been synthesised at ambient pressure for the first time. Powder X-ray diffraction and electron diffraction confirmed that Sr2CrO4 adopts a body centred tetragonal cell (space group I4/mmm) with lattice parameters a=3.8357(1) Å and c=12.7169(1) Å, while a combination of neutron and X-ray diffraction verified Sr10(CrO4)6F2 is hexagonal (space group P63/m) with lattice parameters a=9.9570(1) Å and c=7.4292(1) Å. X-ray photoelectron spectroscopy and magnetic measurements were used to characterise the oxidation states of chromium contained within these phases.  相似文献   

4.
The compounds Ba3Re2O9 and Sr3Re2O9 were prepared by the solid state reaction of the corresponding alkaline-earth oxide with ReO3 at 750 to 900°C in sealed, evacuated, fused silica tubes. The two compounds are isostructural, having the nine-layer ABO3 structure with vacant central octahedra. The unit cell parameters are given. The magnetic susceptibility for Ba3Re2O9 indicates Curie-Weiss behavior with a Re6+ moment having localized electrons. The magnetic data for Sr3Re2O9 suggest delocalized electron behavior from its temperature-independent susceptibility. Both compounds appear to have semiconducting properties, but the strontium analog is a better conductor. Both compounds are unstable when heated in air above 400°C. They are readily decomposed by chemical oxidizing agents.  相似文献   

5.
Using magnetic and magnetoelectric (ME) powder susceptibility measurements, the low temperature magnetic properties of antiferromagnetic UCrO4 and NdCrTiO5 have been studied. Their Néel temperatures TN are 44.5 and 20.5°K, respectively, the Cr3+ spin systems of both materials ordering cooperatively at TN. Below TN, the U5+ and Nd3+ moments are polarized due to their exchange interaction with the ordered Cr3+ spins. It is argued that, for both compounds, each of the two spin systems contributes to the ME susceptibilities. They are thus the first known ME materials possessing two distinct magnetic sublattices. The effective magnetic moments calculated from the magnetic susceptibilities are in good agreement with those previously reported by neutron diffraction studies.  相似文献   

6.
We have studied the preparation and crystallographic structure of three perovskite-type compounds: Sr3Cr2WO9, cubic, the lattice parameter of which is a = 7.812Å; Ca3Cr2WO9, tetragonal, the lattice parameters of which are a = 5.408 Å and c = 7.635Å; and Ba3Cr2WO9, hexagonal, the lattice parameters of which are a = 5.691 Å and c = 13.957Å. We have compared these three structures and shown the relationship between the dimensions of the alkaline-earth metal and the existence of the different structures.  相似文献   

7.
Two new ternary chromium sulfides, Ba3CrS5, and Ba3Cr2S6 were synthesized by the reaction of sulfur, barium sulfide, and chromium metal under a high pressure of 5 GPa at 1200°C. Ba3CrS5 crystallized in the hexagonal space group P63cm (No. 185) with a=9.1208(3) Å, c=6.1930(3) Å, V=446.17(3) Å3, and Z=6. It had a column structure with one-dimensional chains of [CrS3] composed of face-sharing CrS6 octahedra surrounded with Ba2+ ions. Additional S columns surrounded with Ba ions were running along with the CrS6 columns. Ba3Cr2S6 crystallized in the trigonal space group R-3c (No. 167) with a=11.8179(7) Å, c=12.796(1) Å, V=1547.7(2) Å3, and Z=6. The structure of Ba3Cr2S6 also contains [CrS3] chains but the chains are composed of octahedral and trigonal prismatic CrS6 units, which are alternately stacked in a face-sharing manner. The formal charges of Cr ions in Ba3CrS5 and Ba3Cr2S6 are 4+ and 3+, respectively.  相似文献   

8.
Several members of the Cr1?xMnxO2 series were prepared in the tetrahedral anvil press by the reaction of CrO2 with MnO2. The tetragonal, rutile-type products were single-phase and have been characterized by crystallographic and magnetic measurements. The results are consistent with the formulations Cr4+1?2xCr3+ Mn5+O2 for 0 ? x ? 0.5. At low manganese concentration, x < 0.20, the magnetic moments are consistent with ferromagnetic contribution from Mn5+. A two-phase product was noted at the composition x = 0.90. The CrMnO4 composition was found to have a powder pattern similar to that of orthorhombic PtO2.  相似文献   

9.
Single crystals of LiCr(MoO4)2, Li3Cr(MoO4)3 and Li1.8Cr1.2(MoO4)3 were grown by a flux method during the phase study of the Li2MoO4-Cr2(MoO4)3 system at 1023 K. LiCr(MoO4)2 and Li3Cr(MoO4)3 single phases were synthesized by solid-state reactions. Li3Cr(MoO4)3 adopts the same structure type as Li3In(MoO4)3 despite the difference in ionic radii of Cr3+ and In3+ for octahedral coordination. Li3Cr(MoO4)3 is paramagnetic down to 7 K and shows a weak ferromagnetic component below this temperature. LiCr(MoO4)2 is isostructural with LiAl(MoO4)2 and orders antiferromagnetically below 20 K. The magnetic structure of LiCr(MoO4)2 was determined from low-temperature neutron diffraction and is based on the propagation vektor . The ordered magnetic moments were refined to 2.3(1) μB per Cr-ion with an easy axis close to the [1 1 1¯] direction. A magnetic moment of 4.37(3) μB per Cr-ion was calculated from the Curie constant for the paramagnetic region.The crystal structures of the hitherto unknown Li1.8Cr1.2(MoO4)3 and LiCr(MoO4)2 are compared and reveal a high degree of similarity: In both structures MoO4-tetrahedra are isolated from each other and connected with CrO6 and LiO5 via corners. In both modifications there are Cr2O10 fragments of edge-sharing CrO6-octahedra.  相似文献   

10.
The novel alkaline earth silicate borate cyanides Ba7[SiO4][BO3]3CN and Sr7[SiO4][BO3]3CN have been obtained by the reaction of the respective alkaline earth metals M=Sr, Ba, the carbonates MIICO3, BN, and SiO2 using a radiofrequency furnace at a maximum reaction temperature of 1350°C and 1450°C, respectively. The crystal structures of the isotypic compounds MII7[SiO4][BO3]3CN have been determined by single-crystal X-ray crystallography (P63mc (no. 186), Z=2, a=1129.9(1) pm, c=733.4(2) pm, R1=0.0336, wR2=0.0743 for MII=Ba and a=1081.3(1) pm, c=695.2(1) pm, R1=0.0457, wR2=0.0838 for MII=Sr). Both ionic compounds represent a new structure type, and they are the first examples of silicate borate cyanides. The cyanide ions are disordered and they are surrounded by Ba2+/Sr2+ octahedra, respectively. These octahedra share common faces building chains along [001]. The [BO3]3− ions are arranged around these chains. The [SiO4]4− units are surrounded by Ba2+/Sr2+ tetrahedra, respectively. The title compounds additionally have been investigated by 11B, 13C, 29Si, and 1H MAS-NMR as well as IR and Raman spectroscopy confirming the presence of [SiO4]4−, [BO3]3−, and CN ions.  相似文献   

11.
CrOx/SiO2催化剂上丙烷在CO2气氛中脱氢反应的研究   总被引:2,自引:0,他引:2  
采用XRD、UV-vis DRS、ESR和微分吸附量热等技术,考察了铬担载量分别为2.5、5和10wt%的CrOx/SiO2催化剂的结构、表面性质和氧化还原性能。结果表明,催化剂表面上存在多种Cr的氧化态和聚集形式。随着Cr担载量从2.5wt%到10wt%的逐渐增大,催化剂表面占主导地位的Cr物种由CrO3单体转为多聚CrO3和Cr2O3晶相。在CO2气氛中催化剂对丙烷转化率和丙烯选择性的大小顺序为2.5wt%CrOx/SiO2>5wt%CrOx/SiO2>10wt%CrOx/SiO2,反应过程中的原位ESR和UV-visDRS测定结果表明,催化剂表面的反应活性中心为Cr5+,Cr5+可由催化剂预处理过程中Cr3+的氧化及丙烷反应过程中CrO3单体的还原产生,在反应中CO2可使Cr3+重新氧化为Cr5+.  相似文献   

12.
In this paper, studies on various physical properties, viz., dielectric properties (dielectric constant, loss tan δ, a.c. conductivity σ) over a wide range of frequency and temperature, optical absorption, ESR at liquid nitrogen temperature and magnetic susceptibility at room temperature of Li2O-CaF2-P2O5: Cr2O3 glass ceramics, have been reported. The optical absorption, ESR and magnetic susceptibility studies indicate that the chromium ions exist in Cr5+, Cr4+ and Cr6+ states in addition to Cr3+ state in these samples. The dielectric constant and loss variation with the concentration of Cr2O3 have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analysed by a graphical method and the spreading of dielectric relaxation has been established. The a.c. conductivity in the high-temperature region seems to be connected both with electronic and ionic movements.  相似文献   

13.
Solid solutions of the end members Fe2WO6, Cr2WO6, and Rh2WO6 have been prepared and their crystallographic and magnetic properties studied. All solid solutions crystallize with the trirutile structure, and their magnetic behavior is characterized by the existence of antiferromagnetic interactions and effective molar Curie constants corresponding to those expected from contributions of the spinonly moments of high-spin Fe3+, Cr3+, and diamagnetic low-spin Rh3+ ions. Fe2WO6 crystallizes with the tri-α-PbO2 structure and is antiferromagnetic and conducting. The random rutile Rh2WO6 is conducting, and the difference between its magnetic and electric properties and those of the inverse trirutile Cr2WO6 are discussed in terms of possible interactions between Cr3+(3d) or Rh3+(4d) orbitals and W6+(5d) orbitals.  相似文献   

14.
Magnetic susceptibility and torque measurements of FeV2S4, FeV2Se4 and FeTi2Se4 were made using the powder and the single crystal samples. The inverse susceptibility of FeV2S4, FeV2Se4 and FeTi2Se4 changed its slope at 850, 820 and 700 K, respectively, at which temperature the order-disorder transition of cation vacancies should seem to take place. Above these temperatures the paramagnetic moment obtained for these compounds was in the range of 5.26–5.37 μB, close to that of the high spin state Fe2+. Below these temperatures the paramagnetic moment was reduced to 4.23–4.35 μB.The antiferromagnetic spin axis of FeV2S4 was in the neighborhood of the [101] direction and that of FeV2Se4 and FeTi2Se4 in the direction of the c-axis. The large magnetic anisotropy observed and the preference of the magnetic moments for the direction of the c-axis were attributed to the spin-orbit interaction of Fe2+ electrons in the trigonal crystal field.  相似文献   

15.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

16.
Properties of Sr2Cu(PO4)2 and Ba2Cu(PO4)2 having [Cu(PO4)2] linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at TM=92 K for Sr2Cu(PO4)2 and TM=82 K for Ba2Cu(PO4)2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/kB=143.6(2) K for Sr2Cu(PO4)2 and g=2.073(4) and J/kB=132.16(9) K for Ba2Cu(PO4)2 (Hamiltonian H=JΣSiSi+1). The similar J/kB values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, TN, were below 0.45 K. Sr2Cu(PO4)2 and Ba2Cu(PO4)2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with kBTN/J<0.34% together with Sr2CuO3 (kBTN/J≈0.25%) and γ-LiV2O5 (kBTN/J<0.16%). Sr2Cu(PO4)2 and Ba2Cu(PO4)2 were stable in air up to 1280 and 1150 K, respectively.  相似文献   

17.
The Sr4Al14O25:M and doped Sr4Al14O25:M+Sm3+ (M=Mn4+, Cr3+) phosphors were syn-thesized by a solid-state reaction method and their luminescent properties were investi-gated. The results showed that the co-doping of Sm ions did not change the positions of excitation band and emission band but signi cantly improved the luminescent properties of Sr4Al14O25:Cr3+ phosphors; whereas, the emission intensity of Sr4Al14O25:Mn4+ was re-dueced remarkably when Sm ions were co-doped. In addtion, a radiative-form energy transfer from Sm3+ to Cr3+ was observed for the first time in the Cr, Sm co-doped Sr4Al14O25 phos-phors. The results indicated that Sm ions could signi cantly improve the emission intensity of Sr4Al14O25:Cr3+, making the Sm3+co-doped Sr4Al14O25:Cr3+ phosphor a promising can-didate for the applications in display and solid state lightening.  相似文献   

18.
Several studies demonstrated the ability of britholites to retain radionuclides such as the caesium and actinides. Therefore, three compounds with formulas Sr8LaCs(PO4)6F2, Sr7La2Cs(PO4)5(SiO4)F2 and Sr2La7Cs(SiO4)6F2, were prepared by solid state reaction. However, it seems that only the mono-silicated composition was obtained in a pure state. In this present work, the X-ray diffraction and magnetic nuclear resonance have been used to investigate the structure for this composition. The results showed that in fact this phase was not pure, but it was mixed with a secondary phase, SrLaCs(PO4)2. The refinement by the Rietveld method allowed also to precise the distribution of La3+ and Cs+ ions between the two cationic sites of the apatite.  相似文献   

19.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

20.
Cr2V4O13, a tetravanadate of Cr3+ has been prepared by repeated heating of stoichiometric amounts of Cr2O3 and V2O5 and its crystal structure is refined by Rietveld refinement of the powder XRD data. This compound crystallizes in a monoclinic lattice with unit cell parameters: a=8.2651(3), b=9.2997(3), c=14.5215(5) Å, β=102.618(3)°, V=1089.21(6) Å3 and Z=4 (Space group: P21/c). The U shaped (V4O13)6− formed by corner connected VO4 tetrahedra links the Cr2O10 (dimers of two edge shared CrO6 octahedra) forming a three dimensional network structure of Cr2V4O13. This compound is stable up to 635 °C and peritectically decomposes to orthorhombic CrVO4 and V2O5 above this temperature. A possible long range antiferromagnetic ordering below 10 K is suggested from the squid magnetometry and electron paramagnetic resonance (epr) spectroscopic studies of Cr2V4O13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号