首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

2.
The crystal structure of Cs[VOF3] · 12H2O has been determined and refined on the basis of three-dimensional X-ray diffractometer data (Mo radiation). The structure is monoclinic, a = 7.710(2), b = 19.474(7), c = 7.216(2)Å, β = 116.75(1)°, V = 967.5Å3, Z =8, space group Cc (No. 9). The final R and Rw were 0.0295 and 0.0300, respectively, for 1356 independent reflections and 117 variables.The structure contains two crystallographically different VOF5 octahedra linked so as to form complex chains. Two non-equivalent octahedra share one FF edge, forming V2O2F8 doublets. Two F atoms, connected to different V atoms within the doublet, form an edge in the adjacent equivalent V2O2F8 unit thus continuing the chain. The VO distances are 1.583(7) and 1.595(7) Å. The VF distances are in the range 1.881-2.205 Å, mean value: 1.989 Å. The H2O group is a crystal water molecule.  相似文献   

3.
The new compound BaSb2S4 crystallizes in the monoclinic system (space group: P21c, No. 14) with a = 8.985(2) Å, b = 8.203(3) Å, c = 20.602(5) Å, β = 101.36(3)°. SbS3 ψ tetrahedra and ψ-trigonal SbS4 bipyramids are connected by common corners and edgers to infinite strings. These are arraged cross-wise in sheets perpendicular to the c axis.  相似文献   

4.
The structure of a KxP2W4O16 (x ? 0.4) crystal was established by X-ray analysis. The solution in the cell of symmetry P21m, with a = 6.6702(5), b = 5.3228(8), c = 8.9091(8) Å, β = 100.546(7)°, Z = 1, has led to R = 0.033 and Rw = 0.036 for 2155 reflections with σ(I)I ≤ 0.333. This structure can be described as two octahedra-wide ReO3-type slabs connected through “planes” of PO4 tetrahedra. A new structural family KxP2W2nO6n+4 can be foreseen which is closely related to the orthorhombic P4W8O32 and the monoclinic RbxP8W8nO24n+16 series.  相似文献   

5.
Single crystals of the title compounds have been grown by the Czochralski technique. Pb4P2O9 crystallizes in the space group P21c with the parameters a = 9.4812 Å, b = 7.1303 Å, c = 14.390 Å, β = 104.51° and Pb8P2O13 in C2m with a = 10.641 Å, b = 10.206Å c = 14.342 Å, β = 98.34°.  相似文献   

6.
A precise structural determination of KPbCr2F9 was carried out. The symmetry is orthorhombic with a = 9.81(5), b = 5.412(3), c = 13.93(1) Å, and Pnma. The structure was refined from 1285 X-ray reflections by full-matrix least squares to an R = 0.041. The lattice is made up of double chains (Cr2F9)3n?n running along the b axis with Pb and K atoms ensuring its cohesion. The results of the magnetic studies are reported and discussed.  相似文献   

7.
Black platy crystals from the product of a reaction mixture of 6BaS : 3Nb : 7S reacted at 1000°C were hexagonal with a = 6.909(4) Å, c = 49.25(2) Å, P63mmc, Z = 10. A pronounced subcell with a = 6.91Å, c = 5.5 Å indicated that this was a layer structure consisting of stacking of close-packed BaS3 layers. Three dimensional X-ray diffraction data were collected from a single crystal using monochromatized Mo radiation. From the 1535 measured reflections, 782 unique structure amplitudes were obtained of which 608 greater than 2σ(F) were used to solve the structure. The final R = 0.1065, ωR = 0.0793; for 91 reflections with l = 9n, R = 0.0397 and for the 517 reflections l ≠ 9n, R = 0.138. The structure is based on the stacking of close-packed BaS3 layers with the sequence CBDBABDBC BCDCACDCB, where D designates a disordered layer. The disordered layers contain two crystallographically independent Ba with partial site occupancies and disordered S2 and S ions. Nb occupy octahedral interstices and form two different arrangements; a unit consisting of 3 face-sharing octahedra and a unit of 2 face-sharing octahedra. These octahedral units are separated by the disordered layers. The NbNb distances in the chain of 3 are 3.29 Å and they are 3.57 Å in the double unit.  相似文献   

8.
Single crystal Na2TeO4 has been prepared by hydrothermal synthesis and its structure determined from three dimensional X-ray analysis. The crystal is monoclinic, space group PP21c with a = 10.632(5)Å, b = 5.161(2)Å; c = 13.837(11)Å, and β = 103.27(4)°. The crystal structure is built up of chains of Te(VI)O6 octahedra parallel to the [010] axis which can be formulated as [TeO4]n2n?. All sodium cations are in very distorted octahedral coordination.  相似文献   

9.
The LiPO3CeP3O9 and NaPO3CeP3O9 systems have been investigated for the first time by DTA, X-ray diffraction, and infrared spectroscopy. Each system forms a single 1:1 compound. LiCe(PO3)4 melts in a peritectic reaction at 980°C. NaCe(PO3)4 melts incongruently, too, at 865°C. These compounds have a monoclinic unit cell with the parameters: a = 16.415(6), b = 7,042(6), c = 9.772(7)Å; β = 126.03(5)°; Z = 4; space group C2c for LiCe (PO3)4; and a = 9.981(4), b = 13.129(6), c = 7.226(5) Å, β = 89.93(4)°, Z = 4, space group P21n for NaCe(PO3)4. It is established that both compounds are mixed polyphosphates with chain structure of the type |MIIMIIIII (PO3)4|MII: alkali metal, MIIIII: rare earth.  相似文献   

10.
Ba2Ni3F10 is monoclinic (space group C2m), a = 18.542(7) Å, b = 5.958(2) Å, c = 7.821(3) Å, β = 111°92(10). Ba2Co3F10 and Ba2Zn3F10 are isostructural. The structure has been refined from 995 reflections by full-matrix least-squares refinement to a weighted R value of 0.048 (unweighted R, 0.047). The three-dimensional network can be described either by complex chains connected to each other by octahedra sharing corners or with an 18L dense-packing sequence. The basic unit (Ni3F10)4? is discussed and compared to the different unit existing in Cs4Mg3F10. Antiferromagnetic properties of Ba2Ni3F10 (TN = 50 K are described.  相似文献   

11.
The crystal structures of α-UF5 and U2F9 were refined with high-resolution neutron powder diffraction data from an α-UF5U2F9 mixture. Refinement was achieved by a multiphase Rietveld profile refinement technique. The results are compared with previous X-ray and neutron powder studies.  相似文献   

12.
The crystal structures of the apatites Ba10(PO4)6F2(I), Ba6La2Na2(PO4)6F2(II) and Ba4Nd3Na3(PO4)6F2 (III) have been determined by single-crystal X-ray diffraction. All three compounds crystallize in a hexagonal apatite-like structure. The unit cells and space groups are: I, a = 10.153(2), c = 7.733(1)Å, P63m; a = 9.9392(4), c = 7.4419(5)Å, P6; III, a = 9.786(2), c = 7.281(1)Å, P3. The structures were refined by normal full-matrix crystallographic least squares techniques. The final values of the refinement indicators Rw and R are: I, Rw = 0.026, R = 0.027, 613 observed reflections; II, Rw = 0.081, R = 0.074, 579 observed reflections; III, Rw = 0.062, R = 0.044, 1262 observed reflections.In I, the Ba(1) atoms located in columns on threefold axes, are coordinated to nine oxygen atoms; the Ba(2) sites form triangles about the F site and are coordinated to six oxygen atoms and one fluoride ion. The fluoride ions are statistically displaced ~0.25 Å from the Ba(2) triangles. This displacement of the F ions is analogous to the displacement of OH ion in Ca10(PO4)6(OH)2.The structures of II and III contain disordered cations. In II there is disorder between La and Na in the column cation sites as well as triangle sites. In III, Nd and Na ions are ordered in the column sites, but there is disorder among Ba and the remaining Nd and Na ions in the triangle sites to give an average site population of 23Ba, 16Nd, 16Na. The coordination of the rare earth ions and Na ions in the ordered column sites are nine and six oxygens, respectively, in accord with the greater charge of the rare earth ions as compared with Na. The F ions in both II and III suffer from considerable disorder in position, and their locations are not precisely known.  相似文献   

13.
The stoichiometric lanthanum disulfide LaS2 presents a reversible phase transition at about 750°C. The α low-temperature form is monoclinic with the LaSe2 type. All the crystals are twinned with the same twin law (100). The cell parameters are a = 8.18, b = 8.13, c = 4.03Å, γ = 90°, space group P21a. The β high-temperature form has the orthorhombic structure previously described with the parameters a = 8.13, b = 16.34, c = 4.14 Å; space group Pnma. The two structures are compared.  相似文献   

14.
A high-temperature phase with the formula Cs1?xLu3F10?x (x ? 0.25) has been characterized during the investigation of the CsFLuF3 system. This phase crystallizes in the monoclinic system with unit-cell dimensions a = 13.764(5) Å, b = 7.947(1) Å, c = 4.299(2)Å, β = 90.04(5)° and space group Cm (No. 8), Z = 2. The structure was solved by conventional Patterson and Fourier methods and refined by full-matrix least-squares techniques to a conventional R of 0.053 (Rw = 0.079) for 2038 independent reflections recorded on an automatic four-circle diffractometer. The structure may be regarded as built up of (Lu3F10)? layers that may be described as corner- and edge-shared LuF7 pentagonal bipyramids. These layers run parallel to the (001) plane. The structure extends along the third direction by cornersharing involving axial vertices of the pentagonal bipyramids. This three-dimensional framework delimits tunnels running parallel to the c direction where the Cs+ ions lie. The partial occupancies of both the Cs site and one out of the seven independent fluorine sites results in the nonstoichiometry.  相似文献   

15.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

16.
Crystal structures for the fluorite-related phases CaHf4O9ф1) and Ca6Hf19O44 (ф2) have been determined from X-ray powder diffraction data. qf1 is monoclinic, C2c, with a = 17.698 Å, b = 14.500Å, c = 12.021 Å, β = 119.47° and Z = 16. qf2 is rhombohedral, R3c, with a = 12.058 Å, α = 98.31° and Z = 2.Both phases are superstructures derived from the defect fluorite structure by ordering of the cations and of the anion vacancies. The ordering is such that the calcium ions are always 8-coordinated by oxygen ions, while the hafnium ions may be 6-, 7-, or 8-coordinated. The closest approach of anion vacancies is a 12〈111〉 fluorite subcell vector, and in each structure vacancies with this separation form strings.  相似文献   

17.
Single crystals of BaTiF5 and CaTiF5 were obtained by the Czochralski and Bridgman techniques, respectively. The crystal structures were determined by X-ray diffraction; BaTiF5: 14m, a = 15.091(5)Å, c = 7.670(3)Å; CaTiF5: I2c, a = 9.080(4)Å, b = 6.614Å, c = 7.696(3)Å, β = 115.16(3)°. Both structures are characterized by the presence of either branched or straight chains of TiF6 octahedra. BaTiF5 contains the unusual dimeric unit (Ti2F10)4?. Magnetic susceptibility measurements were performed on both compounds in the temperature range 4.2 to 300 K, however, no evidence for magnetic interactions between the Ti3+ moments were observed.  相似文献   

18.
The system MgOSiO2H2O was investigated at pressures between 40 and 95 kbar and at temperatures between 500 and 1400°C. The reaction products were examined by X-ray, optical and thermal analysis techniques and the density of phase A discovered by Ringwood and Major was also measured. It was found that phase A was hydrated and its chemical formula was H6Mg7Si2O14. When the MgSi ratio of the system is 2, phase A + clinoenstatite, and forsterite are stable at temperatures lower and higher than a boundary curve T (°C) = 10P (kbar), respectively. When the MgSi ratio of the system is 3, phase A + phase D (which is completely different from the phases, A, B and C discovered by Ringwood and Major, and any other known phases of magnesium silicate) and phase D + brucite are stable at temperatures lower and higher than a boundary curve T(°C) = 10P (kbar) + 200. Phase A has approximately an hexagonal symmetry and the space group and the lattice parameters are determined as P63 or P63m and a = 7.866(2) Å and c = 9.600(3) Å, respectively. The measured density is 2.96 ± 0.02 g/cm3. The optical observations show that phase A is biaxial positive crystal with refractive indices α = 1.638 ± 0.001, β = 1.640 ± 0.002, and γ = 1.649 ± 0.001. Some interpretation is given on the inconsistency between the symmetry determined by the X-ray diffraction and the optical observation. The new phase D belongs to the space group P21c with lattice parameters a = 7.914(2)Å, b = 4.752(1) Å, c = 10.350(2) Å and β = 108.71(5)° and is a biaxial crystal with refractive indices α = 1.630 ± 0.002, β = 1.642 ± 0.002 and γ = 1.658 ± 0.001.  相似文献   

19.
The crystal structure of KP8W40O136, the tenth member of the series KxP4O8(WO3)2m, has been resolved by three-dimensional single-crystal X-ray analysis. The space group is P21c and the cell parameters are a = 19.589(3) Å, b = 7.5362(4) Å, c = 16.970(3) Å and β = 91.864(14)°. The framework is built up from ReO3-type slabs connected through pyrophosphate groups. The structure is compared to those of the other members of the series: although the ReO3-type slabs show a different type of tilting of the WO6 octahedra, the dispersion of WO distances is always higher for the octahedra linked to one or two P2O7 groups and decreases in proportion as W is farther from these groups. The perovskite cages of the slabs are described and compared to those encountered in the structures of WO3 and of the bronzes AxWO3.  相似文献   

20.
The high-temperature form of NaFeP2O7 crystallizes in the monoclinic P21c space group with a = 7.3244(13), b = 7.9045(7), c = 9.5745(15), Å, β = 111.858(13)°, and Z = 4. The structure has been refined from 3842 reflections leading to R = 0.040 and Rw = 0.047. The structure of II-NaFeP2O7 can be described by alternately stacking layers containing the FeO6 octahedra and layers formed by the P2O7 groups, parallel to (001). Elongated cages are formed where two Na+ ions are located. The structure is compared with that of KAlP2O7. Both structures are built up from blocks of three polyhedra, [FeP2O11] or [AlP2O11], including a small OoctOtetOoct angle. These blocks are connected in such a way that several types of tunnels appear in each structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号