首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We present polynomial-time interior-point algorithms for solving the Fisher and Arrow–Debreu competitive market equilibrium problems with linear utilities and n players. Both of them have the arithmetic operation complexity bound of )) for computing an -equilibrium solution. If the problem data are rational numbers and their bit-length is L, then the bound to generate an exact solution is O(n 4 L) which is in line with the best complexity bound for linear programming of the same dimension and size. This is a significant improvement over the previously best bound )) for approximating the two problems using other methods. The key ingredient to derive these results is to show that these problems admit convex optimization formulations, efficient barrier functions and fast rounding techniques. We also present a continuous path leading to the set of the Arrow–Debreu equilibrium, similar to the central path developed for linear programming interior-point methods. This path is derived from the weighted logarithmic utility and barrier functions and the Brouwer fixed-point theorem. The defining equations are bilinear and possess some primal-dual structure for the application of the Newton-based path-following method. Dedicated to Clovis Gonzaga on the occassion of his 60th birthday. This author was supported in part by NSF Grants DMS-0306611 and DMS-0604513. The author would like to thank Curtis Eaves, Osman Güler, Kamal Jain and Mike Todd for insightful discussions on this subject, especially on their mathematical references and economic interpretations of the fixed-point model presented in this paper.  相似文献   

2.
In this paper, we introduce a class of vertical implicit complementarity problems and give a necessary and sufficient condition for the upper semi-continuity of the solution map to the vertical implicit homogeneous complementarity problem of type R0. This work is supported by the Basic and Applied Research Projection of Sichuan Province (05JY029-009-1).  相似文献   

3.
On the solution of a two ball trust region subproblem   总被引:2,自引:0,他引:2  
In this paper we investigate the structure of a two ball trust region subproblem arising frequently in nonlinear parameter identification problems and propose a method for its solution. The method decomposes the subproblem and allows the application of efficient, well studied methods for the solution of trust region subproblems arising in unconstrained optimization. In the discussion of the structure we focus on the case where both constraints are active and on the treatment of the unconstrained problem.The research of this author was partially supported bygottlieb-daimler andkarl-benz-stiftung, Ladenburg and NSF, Cooperate of Agreement No. CCR-8809615.  相似文献   

4.
In this paper, the problem of identifying the active constraints for constrained nonlinear programming and minimax problems at an isolated local solution is discussed. The correct identification of active constraints can improve the local convergence behavior of algorithms and considerably simplify algorithms for inequality constrained problems, so it is a useful adjunct to nonlinear optimization algorithms. Facchinei et al. [F. Facchinei, A. Fischer, C. Kanzow, On the accurate identification of active constraints, SIAM J. Optim. 9 (1998) 14-32] introduced an effective technique which can identify the active set in a neighborhood of a solution for nonlinear programming. In this paper, we first improve this conclusion to be more suitable for infeasible algorithms such as the strongly sub-feasible direction method and the penalty function method. Then, we present the identification technique of active constraints for constrained minimax problems without strict complementarity and linear independence. Some numerical results illustrating the identification technique are reported.  相似文献   

5.
An aggregate subgradient method for nonsmooth convex minimization   总被引:2,自引:0,他引:2  
A class of implementable algorithms is described for minimizing any convex, not necessarily differentiable, functionf of several variables. The methods require only the calculation off and one subgradient off at designated points. They generalize Lemarechal's bundle method. More specifically, instead of using all previously computed subgradients in search direction finding subproblems that are quadratic programming problems, the methods use an aggregate subgradient which is recursively updated as the algorithms proceed. Each algorithm yields a minimizing sequence of points, and iff has any minimizers, then this sequence converges to a solution of the problem. Particular members of this algorithm class terminate whenf is piecewise linear. The methods are easy to implement and have flexible storage requirements and computational effort per iteration that can be controlled by a user. Research sponsored by the Institute of Automatic Control, Technical University of Warsaw, Poland, under Project R.I.21.  相似文献   

6.
Jacobian smoothing Brown’s method for nonlinear complementarity problems (NCP) is studied in this paper. This method is a generalization of classical Brown’s method. It belongs to the class of Jacobian smoothing methods for solving semismooth equations. Local convergence of the proposed method is proved in the case of a strictly complementary solution of NCP. Furthermore, a locally convergent hybrid method for general NCP is introduced. Some numerical experiments are also presented.  相似文献   

7.
Infeasible-interior-point paths , a positive vector, for a horizontal linear complementarity problem are defined as the solution of () If the path converges for , then it converges to a solution of . This paper deals with the analyticity properties of and its derivatives with respect to r near r = 0 for solvable monotone complementarity problems . It is shown for with a strictly complementary solution that the path , , has an extension to which is analytic also at . If has no strictly complementary solution, then , , has an extension to that is analytic at . Received May 24, 1996 / Revised version received February 25, 1998  相似文献   

8.
In this paper a workforce model is studied from both a theoretical and an algorithmic point of view. In the considered hierarchical model workforce units can be substituted by higher qualified ones; external workforce can also be hired to cover low qualified jobs. An exact recursive solution algorithm is proposed to solve the problems and its efficiency is improved by means of cut conditions and discrete convexity properties. Finally, the results of a computational test are provided.  相似文献   

9.
A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.  相似文献   

10.
In this paper, generalization of a vertical block linear complementarity problem associated with two different types of matrices, one of which is a square matrix and the other is a vertical block matrix, is proposed. The necessary and sufficient conditions for the existence of the solution of the generalized vertical block linear complementarity problem is derived and the relationship between the solution set of the generalized vertical block linear complementarity problem and the linear complementarity problem is established. It is proved that the generalized vertical block linear complementarity problem has the P-property if and only if the vertical block linear complementarity problem has the P-property.  相似文献   

11.
Many optimization problems can be reformulated as a system of equations. One may use the generalized Newton method or the smoothing Newton method to solve the reformulated equations so that a solution of the original problem can be found. Such methods have been powerful tools to solve many optimization problems in the literature. In this paper, we propose a Newton-type algorithm for solving a class of monotone affine variational inequality problems (AVIPs for short). In the proposed algorithm, the techniques based on both the generalized Newton method and the smoothing Newton method are used. In particular, we show that the algorithm can find an exact solution of the AVIP in a finite number of iterations under an assumption that the solution set of the AVIP is nonempty. Preliminary numerical results are reported.  相似文献   

12.
A stable set in a graph G is a set of pairwise nonadjacent vertices. The problem of finding a maximum weight stable set is one of the most basic ℕℙ-hard problems. An important approach to this problem is to formulate it as the problem of optimizing a linear function over the convex hull STAB(G) of incidence vectors of stable sets. Since it is impossible (unless ℕℙ=coℕℙ) to obtain a “concise” characterization of STAB(G) as the solution set of a system of linear inequalities, it is a more realistic goal to find large classes of valid inequalities with the property that the corresponding separation problem (given a point x *, find, if possible, an inequality in the class that x * violates) is efficiently solvable.?Some known large classes of separable inequalities are the trivial, edge, cycle and wheel inequalities. In this paper, we give a polynomial time separation algorithm for the (t)-antiweb inequalities of Trotter. We then introduce an even larger class (in fact, a sequence of classes) of valid inequalities, called (t)-antiweb-s-wheel inequalities. This class is a common generalization of the (t)-antiweb inequalities and the wheel inequalities. We also give efficient separation algorithms for them. Received: June 2000 / Accepted: August 2001?Published online February 14, 2002  相似文献   

13.
We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infeasibility/unboundedness detectors. Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.  相似文献   

14.
A fast descent algorithm, resorting to a “stretching” function technique and built on one hybrid method (GRSA) which combines simulated annealing (SA) algorithm and gradient based methods for large scale global optimizations, is proposed. Unlike the previously proposed method in which the original objective functions remain unchanged during the whole course of optimization, the new method firstly constructs an auxiliary function on one local minimizer obtained by gradient based methods and then SA is executed on this constructed auxiliary function instead of on the original objective function in order that we can improve the jumping ability of SA algorithm to escape from the currently discovered local minimum to a better one from which the gradient based methods restart a new local search. The above procedure is repeated until a global minimum is detected. In addition, corresponding to the adopted “stretching” technique, a new next trial point generating scheme is designed. It is verified by simulation especially on large scale problems that the convergence speed is greatly accelerated, which is its main difference from many other reported methods that mostly cope with functions with less than 50 variables and does not apply to large scale optimization problems. Furthermore, the new algorithm functions as a global optimization procedure with a high success probability and high solution precision.  相似文献   

15.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

16.
The nonlinear complementarity problem can be reformulated as unconstrained minimization problems by introducing merit functions. Under some assumptions, the solution set of the nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. These results were presented by Mangasarian and Solodov, Yamashita and Fukushima, and Geiger and Kanzow. In this note, we generalize some results of Mangasarian and Solodov, Yamashita and Fukushima, and Geiger and Kanzow to the case where the considered function is only directionally differentiable. Some results are strengthened in the smooth case. For example, it is shown that the strong monotonicity condition can be replaced by the P-uniform property for ensuring a stationary point of the reformulated unconstrained minimization problems to be a solution of the nonlinear complementarity problem. We also present a descent algorithm for solving the nonlinear complementarity problem in the smooth case. Any accumulation point generated by this algorithm is proved to be a solution of the nonlinear complementarity under the monotonicity condition.  相似文献   

17.
A Regularization Newton Method for Solving Nonlinear Complementarity Problems   总被引:13,自引:0,他引:13  
In this paper we construct a regularization Newton method for solving the nonlinear complementarity problem (NCP(F )) and analyze its convergence properties under the assumption that F is a P 0 -function. We prove that every accumulation point of the sequence of iterates is a solution of NCP(F ) and that the sequence of iterates is bounded if the solution set of NCP(F ) is nonempty and bounded. Moreover, if F is a monotone and Lipschitz continuous function, we prove that the sequence of iterates is bounded if and only if the solution set of NCP(F ) is nonempty by setting , where is a parameter. If NCP(F) has a locally unique solution and satisfies a nonsingularity condition, then the convergence rate is superlinear (quadratic) without strict complementarity conditions. At each step, we only solve a linear system of equations. Numerical results are provided and further applications to other problems are discussed. Accepted 25 March 1998  相似文献   

18.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

19.
Determining whether a solution is of high quality (optimal or near optimal) is fundamental in optimization theory and algorithms. In this paper, we develop Monte Carlo sampling-based procedures for assessing solution quality in stochastic programs. Quality is defined via the optimality gap and our procedures' output is a confidence interval on this gap. We review a multiple-replications procedure that requires solution of, say, 30 optimization problems and then, we present a result that justifies a computationally simplified single-replication procedure that only requires solving one optimization problem. Even though the single replication procedure is computationally significantly less demanding, the resulting confidence interval might have low coverage probability for small sample sizes for some problems. We provide variants of this procedure that require two replications instead of one and that perform better empirically. We present computational results for a newsvendor problem and for two-stage stochastic linear programs from the literature. We also discuss when the procedures perform well and when they fail, and we propose using ɛ-optimal solutions to strengthen the performance of our procedures.  相似文献   

20.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号