首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The capillary electrophoretic-mass spectrometric analysis (CE-MS) of catecholamines was optimized with coaxial sheath flow interface and electrospray ionization (ESI). The parameters studied included the sheath liquid composition and its flow rate, separation conditions in ammonium acetate buffer together with the ESI and cone voltages as mass spectrometric parameters. In addition, the effect of ESI voltage on injection as well as the siphoning effect were considered. The optimized conditions were a sheath liquid composition of methanol-water (80:20 v/v) with 0.5% acetic acid, with a flow rate of 6 microL/min. The capillary electrophoretic separation parameters were optimized with 50 mM ammonium acetate buffer, pH 4.0, to +25 kV separation voltage together with a pressure of 0.1 psi. The most intensive signals were obtained with an ESI voltage of +4.0 kV and a cone voltage of +20 V. The nonactive ESI voltage during injection as well as avoidance of the siphoning effect increased the sensitivity of the MS detection considerably. The use of ammonium hydroxide as the CE capillary conditioning solution instead of sodium hydroxide did not affect the CE-MS performance, but allowed the conditioning of the capillary between analyses to be performed in the MS without contaminating the ion source.  相似文献   

2.
The use of CE coupled with MS (CE-MS) has evolved as a useful tool to analyze charged species in small sample volumes. Because of its sensitivity, versatility and ease of implementation, the ESI interface is currently the method of choice to hyphenate CE to MS. An alternative can be the atmospheric pressure photoionization (APPI) source, however, numerous parameters must be optimized for its coupling to CE. After evaluation of the sheath liquid composition and the CE capillary outlet position, an experimental design methodology was assessed for optimizing other ionization source parameters, such as sheath liquid flow rate, drying gas flow rate and temperature, nebulizing gas pressure, vaporizer temperature, and capillary voltage. For this purpose, a fractional factorial design (FFD) was selected as a screening procedure to identify factors which significantly influence sensitivity and efficiency. A face-centered central composite design (CCD) was then used to predict and optimize sensitivity, taking into account the most relevant variables. Sensitivity was finally evaluated with the optimized conditions and height-to-noise ratios (H/N) around 10 were achieved for an injection of 200 ng/mL of each analyte.  相似文献   

3.
Nogami C  Sawada H 《Electrophoresis》2005,26(7-8):1406-1411
Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) was applied to the analysis of polar positional and geometrical anionic isomers. Since the investigated positional and geometrical anionic isomers have different pK(a) values, they could be separated by CE-ESI-MS under simple analytical conditions using a bare fused-silica capillary and volatile ammonium acetate buffer after optimizing buffer pH. Ortho-, meta-, para-hydroxybenzoate positional isomers were completely separated on a fused-silica capillary with 20 mM ammonium acetate buffer at pH 10.0, and cis-, trans-cyclohexane dicarboxylate geometrical isomers could be also separated with 20 mM ammonium acetate buffer at pH 4.0. Several analytical parameters affecting ESI-MS sensitivity were also investigated. It was found that both running buffer pH and sheath liquid pH had significant effects on the selectivity and the sensitivity on CE-ESI-MS analysis while sheath flow rate and other parameters had little influence. Under optimized conditions, linearity, detection limit, and repeatability of the analysis of hydroxybenzoate isomers were examined, and good results were obtained. It was found that the method presented in this paper is a simple, robust, and cost-effective method for simultaneous analysis of positional and geometrical anionic isomers as well as of other small anionic compounds.  相似文献   

4.
A capillary electrophoresis-electrospray mass spectrometry (CE-ESI-MS) method for the separation and determination of nine biogenic amines is proposed. Operational variables, such as the voltage, temperature, sheath liquid composition, flow-rate, and MS parameters, were optimized. Samples are injected in the hydrodynamic mode into a 75 cm x 50 microm ID coated capillary and separated by using 25 mM citric acid at pH 2.0. Heptylamine is used as internal standard. The experimental setup includes a flow manifold coupled to the CE system for automatic insertion of samples into the CE vials. The proposed method allows amines to be determined with limits of detection from 0.018 to 0.09 microg x mL(-1) and relative standard deviation (RSD) values from 2.4% to 5.0% (except 6.8% for histamine). The method was successfully used to determine biogenic amines in red and white wines.  相似文献   

5.
Xia S  Zhang L  Tong P  Lu M  Liu W  Chen G 《Electrophoresis》2007,28(18):3268-3276
A new method for the determination of the peptide hormones of brain and intestine based on CE coupling with a DAD and ESI-MS was established. Several electrophoretic and ESI-MS parameters were investigated in detail, such as electrolyte nature and concentration, organic solvent and sheath liquid compositions, nebulization gas pressure and the ESI capillary voltage. Optimized conditions were achieved with 25 mM formic acid-ammonium formate (pH 2.9) as the optimal electrolyte, 2 mM formic acid in 80% methanol in water as the sheath liquid, and 20 kV applied voltage. Under the optimized conditions, four protonated peptides were separated by CE and selectively detected by a quadrupole mass spectrometer with a sheath flow ESI interface. LODs for the four peptides (neurotensin hexapeptide, neurotensin, cholecystokinin tetrapeptide, and pentagastrin) were in the range of 0.10-0.60 micromol/L at an S/N of 3. The RSDs (n = 8) of the method were 0.70-1.5% for migration times and 1.6-6.1% for peak areas. This method is simple, rapid, and selective compared with RIA and ELISA techniques, and has been applied to the analysis of rat hypothalamus tissue.  相似文献   

6.
A capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) method was developed for the analysis of the acetylcholinesterase inhibitor rivastigmine. Several electrophoretic and ESI-MS parameters were investigated in order to improve sensitivity. These parameters were categorized in three areas: (i) background electrolyte (BGE) parameters, (ii) sheath liquid parameters, and (iii) spray chamber parameters. The optimized results were obtained by using 40-mM ammonium acetate at pH 9 as BGE, a sheath liquid of 1% acetic acid in water:MeOH (50:50 v/v) at a flow rate of 10?μL/min, and a drying gas flow rate that was set at 6 L/min and at a temperature of 200°C. These parameters provided limit of detection and limit of quantitation of 2.8?ng/mL and 8.4?ng/mL, respectively. The optimal CZE-ESI-MS conditions were applied to a plasma sample obtained from an Alzheimer's disease patient following rivastigmine patch administration, and the mean (±standard deviation) plasma concentration was estimated to be 14.6 (±1.7)?ng/mL. Several sample preparation procedures were examined, and solid-phase extraction using a C18 cartridge proved to be the most effective procedure, since higher sensitivity and recovery were obtained. In addition, precision was evaluated based on migration time and peak area in plasma, and the relative standard deviations were in the range of 0.10-0.16% and 0.62-9.0%, respectively.  相似文献   

7.
Zheng J  Jann MW  Hon YY  Shamsi SA 《Electrophoresis》2004,25(13):2033-2043
A method of coupling capillary zone electrophoresis (CZE) with electrospray ionization-mass spectrometry (ESI-MS) detection has been developed for monitoring an antiepileptic drug, lamotrigine (LTG) in human plasma. The CZE-MS was developed in three stages: (i) CZE separation and ESI-MS detection of LTG and tyramine (TRM, internal standard) were simultaneously optimized by studying the influence of CZE background electrolyte (BGE) pH, BGE ionic strength, and nebulizer pressure of the MS sprayer; (ii) sheath liquid parameters, such as pH, ionic strength, organic modifier content, and flow rate of the sheath liquid, were systematically varied under optimum CZE-MS conditions developed in the first stage; (iii) MS sprayer chamber parameters (drying gas temperature and drying gas flow rate) were varied for the best MS detection of LTG. The developed assay was finally applied for the determination of LTG in plasma samples. The linear range of LTG in plasma sample assay was between 0.1-5.0 microg/mL with a limit of detection as low as 0.05 microg/mL and run time less than 6 min. Finally, the concentration-time profile of LTG in human plasma sample was found to correlate well when CZE-ESI-MS was compared to a more established method of high-performance liquid chromatography with ultraviolet detection.  相似文献   

8.
Conditions for the simultaneous determination of the three herbicides paraquat, diquat and difenzoquat and the two plant growth regulators chlormequat and mepiquat by pressure-assisted capillary electrophoresis coupled to mass spectrometry (ion-trap) using electrospray as ionisation source have been established. A 200 mM formic acid-ammonium formate buffer solution at pH 3.0 with 50% of methanol was used as carrier electrolyte. Some capillary electrophoresis-mass spectrometry parameters such as sheath liquid and sheath gas flow-rates, sheath liquid composition, electrospray voltage andthe CE capillary position were optimised. The MS and MS-MS spectra of positive ions were studied in order to obtain structural information for the confirmation of the identity. The use of labelled standards allowed to confirm fragment ions assignation. The detection limits, based on a signal-to-noise ratio of 3:1, were between 0.5 and 2.5 mg l(-1) with hydrodynamic injection (10 s) and between 1 and 10 microg l(-1) with elecrokinetic injection (20 s, 10 kV) using standards in ultrapure water. Quality parameters such as linearity and run-to-run precision (n=6) were established. Quantitation was carried out using labelled standards. The method has been applied to the analysis of contaminated irrigation water and spiked mineral water samples.  相似文献   

9.
An optimised capillary electrophoresis-electrospray mass spectrometric method is presented for the identification and determination of diazepam and its metabolites N'-desmethyldiazepam, oxazepam and temazepam. By investigating constituent parts of the capillary electrophoresis-electrospray mass spectrometric interface and optimising their function, a relatively fast and reproducible method is described for the identification and determination of selected 1,4-benzodiazepines. Optimisation of sheath and auxiliary gas flows, capillary tip tapering, capillary tip positioning, sheath liquid composition and flow rate and pressure application during the separation step have led to acceptable relative standard deviation (RSD) values for migration time and peak area, correlation coefficients and limits of detection. This has been achieved as a result of stabilising the electrospray current prior to analysis, a procedure that takes a matter of minutes when using the method described. Sequential product ion fragmentation (MS(n)) characterisation of 15 1,4-benzodiazepines is also presented and mechanisms for the observed fragmentation patterns proposed.  相似文献   

10.
Simó C  Rizzi A  Barbas C  Cifuentes A 《Electrophoresis》2005,26(7-8):1432-1441
In this work, the development of a new chiral capillary electrophoresis-mass spectrometry (CE-MS) method to separate D- and L-amino acids is shown. On-line coupling between CE and MS is established through an electrospray-coaxial sheath flow interface. Enantiomer separation is achieved by using a cheap, nonvolatile, chiral selector as beta-cyclodextrin in the background electrolyte (BGE) together with a physically coated capillary that is aimed to prevent contamination of the electrospray. The capillary coating is simple and easy to obtain as it only requires flushing of the capillary with a polymer aqueous solution for 3 min. Optimization of CE parameters (pH of BGE, type and concentration of chiral selector, and capillary inner diameter) and electrospray-MS parameters (nature and flow rate of the sheath liquid, nebulizer pressure) is carried out. Two different derivatization protocols of amino acids using dansyl chloride (DNS) and fluorescein isothiocyanate (FITC) are compared in terms of MS sensitivity and chiral resolution. Under optimum CE-MS conditions it is observed that the MS sensitivity obtained for FITC- and DNS-amino acids is similar (with limit of detection (LOD) in the microM range, corresponding to amounts injected in the fmol range) while chiral resolution is better for FITC-amino acids. The optimized method is demonstrated to provide the simultaneous analysis of 15 selected amino acids (i.e., FITC-D/L-Asp, -Glu, -Ser, -Asn, -Ala, -Pro, -Arg, and FITC-gamma-aminobutyric acid (GABA) in a single chiral CE-MS run, corresponding to the main amino acids that can be found in orange. Moreover, as a result of the high resolution achieved, it is possible to detect down to 2% of D-Asp in the presence of 98% of L-Asp. The good possibilities of chiral CE-MS in food analysis are corroborated through the detection of the main amino acids in a commercial orange juice (i.e., FITC-L-Asp, -Glu, -Ser, -Asn, -Pro, -Arg, and the nonchiral FITC-GABA) as well as the determination of the fraudulent addition of synthetic amino acids (containing D- and L-forms) to a fresh orange juice.  相似文献   

11.
A simple method for producing a sheath flow cuvette in PDMS suitable for post‐column detection in CE is described. Two types of cuvette were investigated. In the first, the sheath flow channel had a round cross‐section of approximately 635 μm diameter, whereas the second cuvette had a 300×300 μm2 square channel. Both cuvettes produced laminar flows that ensheathed the separation capillary's effluent allowing sensitive fluorescence measurements. The elasticity of the PDMS allowed the 300×300 μm2 square sheath flow channel to expand uniformly and accommodate the larger 330–340 μm od round separation capillary, producing a self‐aligning cuvette with robust mechanical properties. With this cuvette, linear calibrations of over five orders of magnitude and 15–30 zmol fluorescein detection limits were obtained for 12 and 50 μm id capillaries.  相似文献   

12.
The influence of instrumental parameters affecting the ionization in continuous full filling capillary electrochromatography/electrospray ionization mass spectrometry (CFF‐CEC/ESI‐MS) was investigated. The investigated parameters were the BGE and sheath liquid ion strength and organic modifier content, the nebulizer gas pressure, and the concentration of nanoparticles in the BGE. It was found that the nebulizer pressure had the largest influence on the separation efficiency and apparent retention. It was shown that even the lowest pressure investigated was sufficient to guide the nanoparticle flow away from the mass spectrometer inlet. A nebulizer pressure of 5 psi was found to be optimal; increasing the pressure significantly decreased the separation efficiency due to the generation of a hydrodynamic flow. Generally, the ion strength of both the BGE and the sheath liquid were found to have very moderate effects on the separation of a homologous series of dialkyl phthalates, whereas the ionization efficiency was found to be unaffected by the nanoparticles and the separation efficiency was found to increase with increasing concentrations up to 3.8 mg/mL, whereafter it was observed to drop. The optimized method was linear over a wide concentration range and presented LOD and LOQ more than threefold lower than those previously reported using CFF‐CEC/ESI‐MS.  相似文献   

13.
建立了高效毛细管电泳-电喷雾飞行时间质谱联用(HPCE-ESI-TOF/MS)快速定性分析黄连中生物碱类化合物的分析方法. 使用未涂层石英毛细管, 以50 mmol/L乙酸铵-0.5%甲醇溶液(用氨水调至pH=7.2)作为运行缓冲液, 分离电压为25 kV; 鞘液组成为50%甲醇-49.5%水-0.5%乙酸, 鞘液流速为4 μL/min; 质谱选用正离子模式, 碰撞电压(Fragmentor)为100 V. 结果表明, 通过各色谱峰紫外光谱和质谱测得精确分子量结果, 结合文献, 对黄连中7种生物碱进行了鉴定. 表明本方法简便、快速, 是黄连中生物碱类化合物快速分离、鉴别的有效方法.  相似文献   

14.
《Electrophoresis》2018,39(11):1382-1389
A sheath‐flow interface is the most common ionization technique in CE‐ESI‐MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE‐MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath‐flow CE‐MS. Because the interface is easy to construct, it is cost‐effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE‐MS‐based metabolomic analysis.  相似文献   

15.
In this work, ion mobility spectrometry (IMS) function as a detector and another dimension of separation was coupled with CE to achieve two‐dimensional separation. To improve the performance of hyphenated CE‐IMS instrument, electrospray ionization correlation ion mobility spectrometry is evaluated and compared with traditional signal averaging data acquisition method using tetraalkylammonium bromide compounds. The effect of various parameters on the separation including sample introduction, sheath fluid of CE and drift gas, data acquisition method of IMS were investigated. The experimental result shows that the optimal conditions are as follows: hydrodynamic sample injection method, the electrophoresis voltage is 10 kilo volts, 5 mmol/L ammonium acetate buffer solution containing 80% acetonitrile as both the background electrolyte and the electrospray ionization sheath fluid, the ESI liquid flow rate is 4.5 μL/min, the drift voltage is 10.5 kilo volts, the drift gas temperature is 383 K and the drift gas flow rate is 300 mL/min. Under the above conditions, the mixture standards of seven tetraalkylammoniums can be completely separated within 10 min both by CE and IMS. The linear range was 5–250 μg/mL, with LOD of 0.152, 0.204, 0.277, 0.382, 0.466, 0.623 and 0.892 μg/mL, respectively. Compared with traditional capillary electrophoresis detection methods, the developed CE‐ESI‐IMS method not only provide two sets of qualitative parameters including electrophoresis migration time and ion drift time, ion mobility spectrometer can also provide an additional dimension of separation and could apply to the detection ultra‐violet transparent compounds or none fluorescent compounds.  相似文献   

16.
J Inoue  T Kaneta  T Imasaka 《Electrophoresis》2012,33(17):2743-2747
Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions.  相似文献   

17.
A method based on capillary electrophoresis-electrospray-mass spectrometry (CE-ESI-MS) was developed to qualitatively characterize natural antioxidants from rosemary (Rosmarinus officinalis L.) in different fractions obtained by pressurized liquid extraction (PLE) using subcritical water. The parameters of CE-ESI-MS were adjusted allowing the separation and characterization of different compounds from rosemary in the PLE fractions. These parameters for CE are kind, pH and concentration of the separation buffer, parameters for ESI-MS are dry gas temperature and flow, nebulizing gas pressure, and make-up flow. The following analytical conditions were found most favorable: aqueous CE buffer (40 mM ammonium acetate/ammonium hydroxide, pH 9); sheath liquid containing 2-propanol-water (60:40, v/v) and 0.1% (v/v) triethylamine at a flow rate of 0.24 mL/h; drying gas flow rate equal to 7 L/min at 350 degrees C, nebulizing gas pressure of 13.8 kPa (2 psi), using a compound stability of 50%. Different antioxidant compounds (e.g., rosmarinic acid and carnosic acid) could be detected in the rosemary extracts by CE-ESI-MS without any additional treatment, enabling the determination of variations in the extract composition caused by the different PLE conditions (i.e., 60 and 100 degrees C). The results provide complementary information to HPLC analysis.  相似文献   

18.
A capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) method was developed to facilitate identification and determination of eleven low-molecular-mass (LMW) organic acids (i.e. oxalic, lactic, malonic, maleic, citric, tartaric, adipic, glutaric, gluconic, isosaccharinic and succinic acid) in different sample matrices. This CZE method was adapted to suit MS conditions. Sheath liquid, sheath flow and MS parameters were optimized to achieve high mass spectrometric sensitivity. The CZE-ESI-MS procedure showed good sensitivity (limit of detection of < 0.05-0.7 mg/l for all acids), linearity (r2 = 0.9925-0.9998) and reproducibility (2.09-5.34% RSD). The applicability of the CZE-ESI-MS was demonstrated on LMW organic acids in an ale sample. In addition the (here presented) method also provided quantification of fumaric, galacturonic and 2-ketoglutaric acid with high sensitivity.  相似文献   

19.
Highly reliable and accurate analytical methods are needed for the determination of magnetic resonance imaging (MRI) contrast agents in complex matrices of clinical interest. We demonstrate the reliability of capillary zone electrophoresis (CZE) coupled with electrospray ionization-mass spectrometry (ESI-MS) for the analysis of MultiHance (gadobenate dimeglumine), a gadolinium-based MRI agent. A sheath liquid interface connected the CE system with an electrospray mass spectrometer equipped with an ion-trap analyzer. CZE with ultraviolet (CZE-UV) and with mass detection (CZE-MS) were compared by analyzing gadobenate dimeglumine and the free ligand diluted in water and in biological fluids (i.e., human serum and urine). The optimization of some relevant CZE-MS parameters was accomplished, like CE buffer composition, sheath liquid composition and flow, and type and length of the separation capillary. CZE-UV was highly influenced by the biological sample components, which hindered a reliable quantification of both gadobenate and free ligand in serum and urine. In CZE-MS, on the other hand, the electrophoretic runs turned out to be independent of the clinical matrices, due to the informative potential and to the selectivity of MS detection.  相似文献   

20.
A generic approach has been developed for coupling capillary electrophoresis (CE) using non-volatile background electrolytes (BGEs) with mass spectrometry (MS) using a sheath liquid interface. CE-MS has been applied for basic and bi-functional compounds using a BGE consisting of 100 mM of TRIS adjusted to pH 2.5 using phosphoric acid. A liquid sheath effect is observed which may influence the CZE separation and hence may complicate the correlation between CE-UV and CE-MS methods. The influence of the liquid sheath effect on the migration behavior of basic pharmaceuticals has been studied by simulation experiments, in which the BGE outlet vial is replaced by sheath liquid in a CE-UV experiment. As a consequence of the liquid sheath effect, phosphate based BGEs can be used without significant loss of MS sensitivity compared to volatile BGEs. The use of buffer constituents such as TRIS can lead to lower detection limits as loss of MS sensitivity can be compensated by better CE performance. TRIS based BGEs permit relatively high injection amounts of about 100 pmol while maintaining high resolution. The ESI-MS parameters were optimized for a generic method with maximum sensitivity and stable operation, in which the composition of the sheath liquid and the position of the capillary were found to be important. Furthermore, the nebulizing pressure strongly influenced the separation efficiency. The system showed stable performance for several days and a reproducibility of about 15% RSD in peak area has been obtained. Nearly all test compounds used in this study could be analyzed with an MS detection limit of 0.05% measured in scan mode using extracted ion chromatograms. As a result, CE-MS was found to be a valuable analytical tool for pharmaceutical impurity profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号