首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic separation of tryptophan enantiomers in biological samples.   总被引:1,自引:0,他引:1  
S Zhao  Y M Liu 《Electrophoresis》2001,22(13):2769-2774
A method for the determination of D- and L-tryptophan (Trp) in biological samples is described. The amino acid enantiomers were precolumn-derivatized with a fluorescence tagging reagent, naphthalene-2,3-dialdehyde (NDA). In the presence of hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as the chiral selector, NDA-tagged Trp enantiomers were well resolved by micellar electrokinetic chromatography (MEKC). Using laser induced fluorescence (LIF) detection, a detection limit of 3.3 x 10(-8) M Trp was obtained. The method was applied to the determination of Trp enantiomers in biological samples including human urine and cerebrospinal fluid (CSF), rat brain tissue, and Aplysia ganglia. No interference from other amino acids or the endogenous compounds in the sample matrices was observed. D-Trp was found at the sub-microM level in human urine samples collected from several healthy subjects. Further, the determination of DL-Trp residues in small quantities (10 microg) of peptides after acid hydrolysis is demonstrated.  相似文献   

2.
In this study, we describe the use of Tween 20‐capped gold nanoparticles (AuNPs) as selective probes for the extraction of aminothiols from an aqueous solution. Tween 20 molecules noncovalently attached to the surface of AuNPs to form Tween 20–AuNPs were used for the selective extraction of aminothiols through the formation of Au–S bonds. After extraction and centrifugation, the aminothiols were detached from the surface of the AuNPs by adding DTT in a high concentration. We used this probe in combination with CE and UV absorption detection. On‐line concentration and separation of the released aminothiols were performed by using 1.6% v/v poly(diallyldimethylammonium chloride) as an additive in CE. Under optimal extraction and stacking conditions, the LOD at a S/N of 3 were 28, 554, and 456 nM for glutathione (GSH), cysteine (Cys), and homocysteine (HCys), respectively. In comparison with the normal injection without the extraction procedure, approximately 2280‐, 998‐, and 904‐fold improvements in the sensitivity were observed for GSH, Cys, and HCys, respectively. We have validated the application of our method on the basis of the analysis of GSH and HCys in human urine samples. It is believed that this approach has significant potential to be extended to clinical diagnosis.  相似文献   

3.
A capillary zone electrophoretic (CZE) method coupled with laser-induced fluorescence (LIF) was developed for the simultaneous determination of two important intracellular parameters related to oxidative stress (i.e. reactive oxygen species, ROS, and reduced glutathione, GSH). This rapid and sensitive method was applied to the study of oxidative stress in cultured V79 fibroblast cells. The fluorogenic reagents selected were: (i) dihydrorhodamine-123 (DHR-123) which is converted intracellularly by ROS to the fluorescent rhodamine-123 dye (Rh-123), and (ii) naphthalene-2,3-dicarboxaldehyde (NDA), which reacts quickly with GSH in cell extracts to produce a fluorescent adduct. Separation of Rh-123, GSH-NDA and gamma-glutamylcysteine-NDA adducts was performed using an uncoated fused-silica capillary and a 100 mM borate buffer, pH 9.2, at 20 degrees C and at an applied voltage of 25 kV; LIF detection was operated using an argon laser. The cell line was also tested for its ability to alleviate oxidative stress induced by tert-butylhydroperoxide (t-BuOOH). Exposure to t-BuOOH (up to 3 mm for 2 h) did not affect the intracellular ROS and GSH concentrations. At higher (4-10 mM) t-BuOOH concentrations, an inverse relationship between the concentrations of ROS and GSH was obtained, showing that the present method can readily evaluate the gradual consumption of the primary cellular scavenger of ROS which occurs simultaneously with the increase of oxidative insult.  相似文献   

4.
A capillary electrophoresis microchip is used to selectively and sensitively monitor cyanide levels in both vapor (HCN((g))) and aqueous (NaCN in drinking water) phases. Laser-induced fluorescence detection is applied using a violet diode laser to monitor the fluorescent isoindole derivative formed by the reaction of cyanide with 2,3-naphthalenedicarboxaldehyde (NDA) and taurine. Air sampling of hydrogen cyanide is achieved using a miniature impinger (2 mL), giving collection efficiencies as high as 79% for a sampling rate of 1.0 L/min and a 10 s sampling time (relative standard deviation RSD: 2.7% for n = 5). Following the addition of NDA and taurine to either the vapor phase impinger sample or an aqueous drinking water sample, the NDA/cyanide derivative can be detected in just over 40 s on the microchip, giving a detection limit of 0.56 microg/L and a linear dynamic range from 0.56 microg/L-2.4 mg/L. The detection limit for hydrogen cyanide in air was determined to be 2.3 ppb (mole%). On-chip derivatization of cyanide by NDA was successful, although a 50% decrease in signal intensity was observed due to insufficient time for completion of the reaction on the microchip. A number of different interferents were examined, and only iron(II) and chlorine showed any interference due to their capability for masking the presence of cyanide by reacting with free cyanide in solution.  相似文献   

5.
微流控芯片NDA在线衍生测定单细胞中谷胱甘肽   总被引:3,自引:0,他引:3  
单细胞分析对研究细胞内信号传递和重大疾病的早期诊断等具有重要意义,荧光标记是检测细胞内物质的常用技术,为防止衍生时的过度稀释,大多采用柱前细胞内衍生法,衍生后再用微流控芯片分析,此法操作复杂,需多次离心分离,且能透过细胞膜标记胞内组分的荧光试剂较少。  相似文献   

6.
In this article, we report a simple method for selective enrichment of aminothiols using Tween 20-capped gold nanoparticles (AuNPs) prior to capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF). Compared to citrate-capped AuNPs, Tween 20-capped AuNPs exhibit the ability to disperse in a highly saline solution and selectively extract aminothiols through the formation of Au–S bonds. After extraction and centrifugation, 1 mM thioglycollic acid (TGA) was utilized to remove aminothiols that attached to the NP surfaces. After a solution of 8.0 mL aminothiols were extracted using 2× AuNPs (200 μL), the extracted aminothiols derivatized with o-phthalaldehyde at pH 12.0 were detected by CE-LIF. As a result, the limits of detection at a signal-to-noise ratio of 3 for homocysteine (HCys), glutathione (GSH), and γ-glutamycysteine (Glu-cys) are 4013.2, 79.8, and 382.8 pM, respectively. The use of this probe provided approximately 11-, 282-, and 21-fold sensitivity improvements for HCys, GSH, and Glu-cys, respectively. A practical analysis of HCys, GSH, and Glu-cys in human urine sample has been accomplished by this present method.  相似文献   

7.
Zhao S  Yuan H  Xiao D 《Electrophoresis》2006,27(2):461-467
A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.  相似文献   

8.
A fast, sensitive, and selective method for the determination of histamine in human urine samples by ultrahigh pressure liquid chromatography (LC) with fluorescence and mass spectrometry (MS) detection is investigated. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The structure of dipyrene-labeled histamine in human urine was determined by quadrupole time-of-flight MS with electospray ionization interface. The determination of the dipyrene derivative of histamine in urine samples was achieved within 3.9 min on an ultrahigh pressure LC Eclipse Zorbax XDB-C(18) column with 1.8 μm particle diameter. In this work, histamine separation was achieved significantly faster (3.9 min) with improved detection limit (signal-to-noise = 3) of 0.04 nM than 19.5 min with a detection limit of 0.183 nM as reported in a previous method.  相似文献   

9.
Qin J  Ye N  Yu L  Liu D  Fung Y  Wang W  Ma X  Lin B 《Electrophoresis》2005,26(6):1155-1162
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR-123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh-123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mM borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic NB4 cells induced by arsenic trioxide (As(2)O(3)) at low concentration (1-2 microM). Buthionine sulfoximine (BSO), in combination with As(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of As(2)O(3) and hydrogen peroxide (H(2)O(2)) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.  相似文献   

10.
In this study, the new nanometer-sized fluorescent particles (1-pyrenemethylamine nanoparticles) have been prepared by reprecipitation method under ultrasonic radiation. These nanoparticles have the potential to overcome problems encountered by organic small molecules by combining the advantages of high photobleaching threshold, high quantum yield, long fluorescence lifetime, good chemical stability, and wide excitation spectral properties. These nanoparticles will be able to be directly used as fluorescent nanoparticles probe without modification. A new fluorimetric method for the determination of reduced glutathione (GSH) has been developed with these nanoparticles. Under optimal conditions, the organic nanoparticles reacted with GSH and o-phthalaldehyde (OPA) to give a highly fluorescent derivative in Na2CO3-HCl buffer (pH=9.0). The fluorescence excitation and emission wavelengths of fluorescent derivative were located at 345 and 400 nm, respectively. The relative fluorescence intensity (RF) was linear in the range of the GSH concentration from 8.0x10(-7) to 1.1x10(-4)moll(-1). Limit of detection of 7.1x10(-8)moll(-1) was achieved for the reduced glutathione. The method was validated and applied to the analysis of three synthetic samples containing reduced glutathione.  相似文献   

11.
《Analytical letters》2012,45(8):1751-1770
Abstract

A method is described for the determination of fumonisin B1 in corn. The method involves sample extraction with methanol:water (75:25) and partial purification using a solid phase extraction. Fumonisin B1 is reacted with naphthalene-2,3-dicarboxaldehyde (NDA) to produce a highly fluorescent derivative, 1-cyano-2-alkyl-benz[f]isoindole (CBI) and then separated from the sample matrix on a reverse phase C-18 column with a mobile phase of acetonitrile:water:acetic acid (55:45:1). The NDA-derivative is quantitated by fluorescence detection at 410 nm excitation and a 440 nm, long past emission filter. Recoveries of fumonisin B1 added to corn at levels of 0.25–20.0 μg/g averaged 88.1% with a coefficient of variation of 10.3%. Confirmation of fumonisin B1 in corn samples was accomplished by fast atom bombardment (FAB) spectroscopy.  相似文献   

12.
Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.  相似文献   

13.
Naphthalene-2,3-dicarboxyaldehyde (NDA) is commonly used for detection of primary amines in conjunction with their separation with HPLC and CE. The fluorescence of the derivatives can be measured by a conventional fluorometer or via LIF. NDA is a reactive dye, which can replace o-phthaldehyde (OPA) and provides for derivatives which are considerably more stable than OPA derivatives. In addition, NDA can be used to derivatize primary amines at concentrations as low as 100 pM. In this work, HPLC/fluorescence and MEKC/LIF experiments were performed to separate/detect six neuroactive compounds, the amino acids, Gly, Glu, Asp, gamma-aminobutyric acid (GABA) and the catecholamines, dopamine and noradrenaline. The two methods were compared in terms of performance of separation. The amino acids can be separated in HPLC in less than 30 min and an identical separation is obtained in CE using MEKC and lithium salts with greater resolution (the number of theoretical plates was approximately 5000 for HPLC and 200 000 for MEKC). The lowest detected concentration was in the range of 0.1 nM for CE/LIF. The presence of a high salt concentration does not affect the separation of the samples. Examples of the analysis of microdialysate samples as well as amino acids in Ringer's solution are presented.  相似文献   

14.
A novel on-line HPLC-DTNB method was developed for the selective determination of biologically important thiols (biothiols) such as l-cysteine (Cys), glutathione (GSH), homocysteine (HCys), N-acetylcysteine (NAC), and 1,4-dithioerythritol (DTE) in pharmaceuticals and tissue homogenates. The biothiols were separated on C18 column using gradient elution, reacted with the postcolumn reagent, DTNB in 0.5% M-β-CD (w/v) solution at pH 8, to form yellow-colored 5-thio-2-nitrobenzoic acid (TNB), and monitored with a PDA detector (λ = 410 nm). With the optimized conditions for chromatography and the post-column derivatization, 40 nM of NAC, 40 nM of Cys, and 50 nM of GSH can be determined. The relative standard deviations of the recommended method were in the range of 3.2–5.4% for 50 μM biothiols. The negative peaks of biothiol constituents were monitored by measuring the increase in absorbance due to TNB chromophore. The detection limits of biothiols at 410 nm (in the range of 0.04–0.58 μM) after post-column derivatization with DTNB + M-β-CD were much lower than those at 205 nm UV-detection without derivatization, and were distinctly lower than those with post-column DTNB alone. The method is rapid, inexpensive, versatile, nonlaborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of biothiol constituents of biological fluids and pharmaceuticals.  相似文献   

15.
Gao N  Li L  Shi Z  Zhang X  Jin W 《Electrophoresis》2007,28(21):3966-3975
A novel high-throughput method is presented based on fluorescence images of cells in a microchannel for determination of glutathione (GSH) and reactive oxygen species (ROS) inside single cells. We first present a method to determine GSH and ROS separately, in which GSH in cells is derivatized by 2,3-naphthalenedicarboxaldehyde (NDA), and intracellular ROS is labeled using dihydrorhodamine 123. The cells with either fluorescent derivatized GSH or fluorescent labeled ROS are introduced into a microchannel and fluorescence images of every moving cell in the microchannel are taken continuously using a highly sensitive thermoelectrically cooled electron-multiplying CCD. The fluorescence intensities of the images correspond to the masses of GSH or ROS. An average detection rate of 80-120 cells/min is achieved. We then propose a method for simultaneously determining GSH and ROS, in which ROS is first labeled in the cells. The labeled cells are then introduced into the whole channel and allowed to immobilize onto the glass substrate. The fluorescence images of all the cells in the channel are taken. NDA is then introduced into the channel to derivatize the GSH in the immobilized cells, and fluorescence images of all cells are taken again. An average analysis rate of 20 cells/min is achieved. The masses of GSH and ROS in the single cells can be obtained from the fluorescence intensities of the images using their calibration curves. Since the cells are not lysed, there is no problem with adsorption of biological macromolecules and cellular debris on the channel wall, so that channel treatment, necessary in usual single-cell analysis techniques using CE and microchip electrophoresis, is no longer necessary. For single global cells, this method can also be used to determine the concentrations of ROS and GSH, which has not been reported previously. The concentrations of ROS and GSH in single global cells can be calculated from the determined masses and the cell volume (derived from the diameter of the round fluorescence image of the derivatized GSH). For gastric cancer cells, the concentrations of GSH and ROS are in the range 0.35x10(-3)-1.3x10(-3) mol/L and 0.77x10(-) (6)-1.5x10(-6) mol/L, respectively.  相似文献   

16.
门雪  吴成新  陈明丽  王建华 《色谱》2023,41(1):87-93
谷胱甘肽(GSH)在抵抗氧化应激和重金属解毒过程中发挥着重要作用,建立灵敏、准确的GSH定量分析方法对于研究细胞重金属毒性机制具有深远意义。该研究以肝癌细胞(HepG2)为研究对象,以活性基团为芳香邻二醛的2,3-萘二甲醛(NDA)为标记试剂,建立了一种高灵敏度的测定细胞中GSH含量的毛细管电泳-激光诱导荧光检测方法(CE-LIF)。实验考察了缓冲溶液的种类、pH、添加剂等对GSH与NDA的反应速率和NDA-GSH检测灵敏度的影响。比较了pH为7.4和9.2的三羟甲基氨基甲烷(Tris)缓冲溶液、pH为9.2的硼砂和Tris缓冲溶液中NDA-GSH的灵敏度和反应速率,结果显示在pH为9.2的硼砂缓冲溶液中NDA-GSH的灵敏度最高且反应速率最快。进一步比较了4种添加剂对NDA-GSH灵敏度的影响,结果显示以β-环糊精(β-CD)作为添加剂效果最好。在最优的实验条件下,GSH与NDA可以在5 min内达到反应平衡,3 min内检测到NDA-GSH电泳信号。采用外标法对细胞中的GSH进行定量分析,方法线性范围为0.01~20.00 mmol/L, GSH的检出限和定量限分别为0.006μm...  相似文献   

17.
We report the use of a sheath flow reactor for post-column fluorescence derivatization of proteins. The derivatization reaction employed naphthalene-2,3-dicarboxaldehyde (NDA) and beta-mercaptoethanol, which were added in the sheath buffer. The labeled proteins were detected by laser-induced fluorescence with an argon-ion laser beam at 488 nm. The performance of this detection scheme was evaluated by separation of some protein standards. A column efficiency of 450,000 plates/m was obtained without stacking. The limits of detection for those standard proteins were determined to be from 8 to 32 nM. Excellent linear relationship was obtained with correlation coefficient of 0.9998 for alpha-lactalbumin concentration ranging from 3.91 x 10(-7) to 1.25 x 10(-5) M. Separation of protein standards at low pH was also demonstrated by reversing the electroosmotic flow (EOF) with addition of cetyltrimethylammonium bromide (CTAB) to the running buffer. Different separation selectivity was achieved, but the sensitivity is poorer than that at high pH. This post-column derivatization detection system was applied successfully to analyze the protein extract from HT29 human colon cancer cells as well as tryptic peptides.  相似文献   

18.
An efficient solid phase extraction-spectrofluorimetric method using graphene as adsorbent was developed to sensitively determine glutathione (GSH) in biological samples. Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was applied for the derivatization of GSH. The procedure was based on BODIPY Fl-C1-IA selective reaction with GSH to form highly fluorescent product BODIPY Fl-C1-IA-GSH, its extraction to the graphene-packed SPE cartridge and spectrofluorimetric determination. Some factors affecting the extraction efficiency, such as the type of the eluent and its volume, sample pH, extraction time, and sample volume were optimized. Comparative studies were also performed between graphene and other adsorbents including C18 silica, graphitic carbon, and multi-walled carbon nanotubes for the extraction of analyte. The calibration graph using the pretreatment system for GSH was linear over the range of 0.5-200 nM. The limit of detection was 0.01 nM (signal-to-noise ratio=3). Relative standard deviation for six replicate determinations of GSH at 80 nM concentration level was lower than 5.0%. The developed method was applied to the determination of GSH in human plasma with recoveries of 92-108%. This work revealed the great potentials of graphene as an excellent sorbent material in the analysis of biological samples.  相似文献   

19.
Chang PL  Chiu TC  Chang HT 《Electrophoresis》2006,27(10):1922-1931
This paper describes the in-column derivatization, stacking, and separation of amino acids by CE in conjunction with light-emitting diode-induced fluorescence using naphthalene-2,3-dicarboxaldehyde (NDA). According to the relative electrophoretic mobilities and the migration direction in tetraborate solution (pH 9.3), the injection order is cyanide, then amino acids, then NDA. Once poly(ethylene oxide) (PEO) migrates through the capillary under EOF, the amino acid.NDA derivatives, amino acids, and CN- ions migrating against the EOF enter the PEO zone. As a result of increases in viscosity and possible interactions with PEO molecules, the reagents/analytes slow down such that they become stacked at the boundary. In comparison with the off-column approach to the analysis of amino acids, our proposed method provides a lower degree of interference from polymeric NDA compounds and other side products. As a result, the plot of the peak height as a function of gamma-aminobutyric acid (GABA) concentration is linear over the range from 10(-5) to 10(-8) M, with the LOD being 4 nM. We demonstrate the diagnostic potential of this approach for the determination of amino acids, including GABA and glutamine, in biological samples through the analysis of large volumes of cerebral spinal fluids without the need for sample pretreatment.  相似文献   

20.
An HPLC (high performance liquid chromatography) method with laser induced fluorescence (LIF) detection is described for the determination of 4-hydroxy-2-nonenal (HNE) formed from lipid peroxidation in rat hepatocytes. Carbonyl compounds were fluorescently labelled by incubating the hepatocyte samples with a tagging reagent, 4-(2-carbazoylpyrrolidin-1-yl)-7-nitro-2,1,3-benzoxadiazole (NBD-ProCZ), at 60 degrees C for 10 min. The hydrazone derivatives were extracted with a C18 solid phase extraction (SPE) cartridge and separated on a reversed-phase HPLC column. The detection limit was 2.5 fmol or 0.5 nM (5 microL injection) of HNE in the cell homogenate. Method precision (C.V.) was 5% at the 5 nM level. The method has been used to determine free HNE in rat hepatocyte samples treated with several pro-oxidant toxins. A significant HNE increase (from 4 to 27.6 pmol/10(6) cells) was observed with the samples treated by allyl alcohol. The results were in accordance with those for malondialdehyde formation as measured by a thiobarbituric acid (TBA) assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号