首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

2.
The adsorption kinetics of anionic polyacrylamide flocculant onto kaolinite clay are examined as a function of flocculant dosage and pH. Special attention has been given to the flocculation effect during the adsorption process and the resulting inhibition of further adsorption. At pH 8.5 the adsorption capacity of anionic polyacrylamide on kaolinite is low while at pH 4.5, the adsorption capacity increases. Flocculant adsorption has been shown to be related to the amount of available surface area, pH, flocculant dosage, and the resulting floc strength, which controls the rate of new surface area exposure and hence the continuation of further adsorption. At both pH 4.5 and pH 8.5, complete adsorption is achieved at low flocculant dosages and adsorption equilibrium is achieved at high flocculant dosages after 1 day. In contrast, at intermediate flocculant dosages adsorption equilibrium is not reached over a 7-day period, due to a continuously increasing surface area.  相似文献   

3.
Carboxymethyl cellulose (CMC) is a polysaccharide which is widely used in many industrial sectors including food, textiles, paper, adhesives, paints, pharmaceutics, cosmetics and mineral processing. It is a natural organic polymer that is non-toxic and biodegradable. These properties make it ideal for industrial applications. However, a general lack of understanding of the interaction mechanism between the polysaccharides and solid surfaces has hindered the application of this polymer. In this work, adsorption of CMC at the solid-liquid interface is investigated using adsorption and electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. CMC adsorption on talc was found to be affected significantly by changes in solution conditions such as pH and ionic strength, which indicates the important role of electrostatic force in adsorption. The pH effect on adsorption was further proven by AFM imaging. Electrokinetic studies showed that the adsorption of CMC on talc changed its isoelectric point. Further, molecular modeling suggests a helical structure of CMC in solution while it is found to adsorb flat on the solid surface to allow its OH groups to be in contact with the surface. Fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, markedly reduced the adsorption of CMC on talc, supports hydrogen bonding as an important factor. In FTIR study, the changes to the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and this further supports the strong hydrogen bonding of CMC to the solid surface. In addition, Langmuir modeling of the adsorption isotherm suggests hydrogen bonding to be a dominant force for polysaccharide adsorption since the adsorption free energy of this polymer was close to that for hydrogen bond formation. All of the above results suggest that the main driving forces for CMC adsorption on talc are a combination of electrostatic interaction and hydrogen bonding rather than hydrophobic force.  相似文献   

4.
The mixed adsorption of the nonionic polymer poly(vinylpyrrolidone) (PVP) and the anionic surfactant sodium dodecylbenzenesulfonate (SDBS) on kaolinite has been studied. Both components adsorb from their mixture onto the clay mineral. The overall adsorption process is sensitive to the pH, the electrolyte concentration, and the amounts of polymer and surfactant. Interpretation of the experimental data addresses also the patchwise heterogeneous nature of the clay surface. In the absence of PVP, SDBS adsorbs on kaolinite by electrostatic and hydrophobic interactions. However, when PVP is present, surfactant adsorption at 10(-2) M NaCl is mainly driven by charge compensation of the edges. The adsorption of PVP from the mixture shows similar behavior under different conditions. Three regions can be distinguished based on the changing charge of polymer-surfactant complexes in solutions with increasing SDBS concentration. At low surfactant content, PVP adsorbs by hydrogen bonding and hydrophobic interactions, whereas electrostatic interactions dominate at higher surfactant concentrations. Over the entire surfactant concentration range, polymer-surfactant aggregates are present at the edges. The composition of these surface complexes differs from that in solution and is controlled by the surface charge.  相似文献   

5.
The variation in polyacrylamide adsorption on Na-kaolinite as a function of the electrolyte concentration of the clay suspension, was determined under three pH conditions, where the clays display varying charge characteristics. Interpretation of the results is based on two arguments: non-charged polyacrylamide adsorption is restricted to the edge faces of the colloidal platelets and hydrogen bonding between the amide groups of the polymer and the isolated hydroxyl sites of these faces is the mode of surface attachment. At constant pH, when Na-kaolinite bears charged surface groups, the polymer adsorption, which is related to the density of the anchoring sites, parallels the state of ionization of the edge surface. The mechanism by which the salt modifies the adsorption properties of the kaolinite in neutral medium is not established with certainty. Nevertheless, no polymer-clay association occurs if the surface is entirely uncharged. This result is in line with the fact that while hydroxyl groups are engaged in internal hydrogen bonds, they cannot hydrogen-bond to the polyacrylamide. Variations in the clay-polymer affinity are attributed to a modification of the interfacial structure of the adsorbed polymer, associated with changes in the surface density of the anchoring groups.  相似文献   

6.
 The electrokinetic behavior and viscosity of anatase and alumina in mixed-surfactant solutions were investigated. Sodium dodecylsulfate and nonionic polyoxyethylene ethers were investigated as model surfactants. Pure nonionic surfactants adsorbed on anatase and coated the particles, so that the zeta potential was nearly zero near the critical micelle concentration of surfactant. At higher surfactant concentrations, an increase in the zeta potentials was observed, suggesting a change in the microstructure of the adsorbed layer. Addition of nonionic surfactant to positively charged anatase and alumina with some preadsorbed sodium dodecylsulfate reversed the surface charge of the oxide to negative, indicating enhanced coadsorption of the anionic surfactant. At higher concentrations of the nonionic surfactant, the charge reversed back to positive. Nonionic surfactants did not reverse the surface charge of these oxides in the absence of the anionic surfactant. Coenhanced adsorption of nonionic and anionic surfactants was used to stabilize alumina at the isoelectric point, where neither surfactant adsorbed appreciably on its own. These results suggest a dramatic change in conformation of the surfactant chains in mixed systems. Further explanation and justification of the proposed changes in adsorbed surfactant conformation require spectroscopic evidence. Received: 12 March 1997 Accepted: 22 July 1997  相似文献   

7.
Guar gum (GG) and locust bean gum (LBG) are two galactomannose polysaccharides with different mannose/galactose ratio which is widely used in many industrial sectors including food, textiles, paper, adhesive, paint, pharmaceuticals, cosmetics and mineral processing. They are natural nonionic polymers that are non-toxic and biodegradable. These properties make them ideal for industrial applications. However, a general lack of understanding of the interactions between the polysaccharides and solid surfaces has hindered wider application of these polymers. In this work, adsorption of locust bean gum and guar gum at the solid-liquid interface was investigated using adsorption tests, electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. Electrokinetic studies showed that the adsorption of GG and LBG on talc do not change its isoelectric point. In addition, GG and LBG adsorption on talc was found not to be affected by changes in solution conditions such as pH and ionic strength, which suggests a minor role of electrostatic force in adsorption. On the other hand, fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Moreover, urea, a hydrogen bond breaker, markedly reduced the adsorption of LBG and GG on talc, supporting hydrogen bonding as an important role. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore also supporting hydrogen bonding of GG and LBG to the solid surface. In addition, Langmuir modeling of adsorption isotherm further suggested that hydrogen bonding is the dominant force for polysaccharide adsorption since the adsorption free energy of these polymers is close to that for hydrogen bond formation. From molecular modeling, different helical structures are observed for LBG and GG because of their different galactose/mannose ratio and these polymers were found to adsorb flat on solid to let more of its OH groups in contact with the surface. All of the above results suggest that the main driving force for adsorption both of GG and LBG on talc is hydrogen bonding rather than hydrophobic force even though there is difference in G/M ratio between them.  相似文献   

8.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

9.
The effect pH, ionic strength (KCl concentration), weakly and medium charged anionic and cationic polyelectrolytes (PEs) as well as their binary mixtures on the electrokinetic potential of silica particles as a function of the polyelectrolyte/mixture dose, its composition, charge density (CD) of the PE, and way of adding the polymers to the suspension has been studied. It has been shown that addition of increasing amount of anionic PEs increases the absolute value of the negative zeta-potential of particles at pH > pH isoelectric point (IEP = 2.5); this increase is stronger the charge density of the polyelectrolyte is higher. Adsorption of cationic polyelectrolytes at these pH values gives a significant decrease in the negative ζ-potential and overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD. In mixtures of cationic and anionic PE at pH > pHIEP, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs, the mixture composition and the sequence of addition of the mixture components. Unexpectedly, the ζ-potential of silica at pH = 2.1, i.e. < pHIEP, turned out to be positive in the presence of both anionic PE and cationic + anionic PE mixtures. This is explained by formation (and adsorption onto positively charged silica surface) of pseudo-cationic PEs from anionic ones due to transfer of protons from the solution to the amino-group of the anionic polymer. Considerations about the role of coulombic and non-coulombic forces in the mechanism of PE adsorption are presented.  相似文献   

10.
Adsorption behavior of selected monosaccharides onto an alumina interface   总被引:2,自引:0,他引:2  
The adsorption of glucose and fructose from their aqueous solutions onto an alumina interface has been carried out spectrophotometrically at room temperature. The adsorption isotherms are characterized as typical L-type and an adsorption mechanism on the basis of dipolar interactions has been suggested. In addition to this, a partial role of metal-saccharide interactions as found in organometallic complexes (OMCs) for the observed adsorption cannot be ruled out. Various kinetic and thermodynamic parameters of the adsorption process have been evaluated. The effects of variation in experimental conditions of the system have also been investigated. The adsorption exhibited a typical response to the pH effect and maximum adsorption was found near the isoelectric point of alumina (pH 9.0). The anionic addition to the suspension affects the adsorbed amount and Cl(-), SO(4)(2-), and PO(4)(3-) affect the adsorption quantitatively. The addition of similar concentration of cations was found to reduce the adsorbed amount. The presence of cationic and anionic detergents was found to influence both the adsorbed amount and the adsorption rate. The temperature was found to have an inverse effect on adsorption. Adsorptive kinetic parameters have revealed that fructose tends to be a better adsorbate than glucose. This is found to be consistent with the chelation behaviour of monosaccharides as found in the OMC of monosaccharides. The thermodynamics of the adsorption model indicates its spontaneous and exothermic nature. The negative values of entropy are an indication of the probability of a favorable nature of adsorption.  相似文献   

11.
The mechanisms of eight anionic polyelectrolytes stabilizing colloidal sized alpha-Al(2)O(3), pure ZrO(2), and Y(2)O(3)-doped ZrO(2) particles in aqueous solution are discussed. The polyelectrolytes studied were the Na(+) and NH(4)(+) salts of polyacrylic acid and polymethacrylic acid having different molecular weights. The particle-dispersant interactions were studied by measuring adsorption isotherms, particle size, thickness of adsorbed layer, and zeta potentials by elektrokinetic sonic analysis at different powder volume fractions (straight phi=0.01-0.3), pH, and electrolyte (KCl) content. The dissociation of the polyelectrolytes was studied by potentiometric titrations. The dissociation constant of the polymethacrylates was found to be 0.6 pH unit higher than that for the polyacrylates. High-affinity adsorption isotherms were observed over the pH range when the polyelectrolytes were fully ionized. The results show good correlation between adsorption isotherms and zeta potential data in systems of dispersed, dilute alumina particles. When particles and polymers were of equal charge (the same sign of charge) the polymer shell was thicker. At higher volume fractions (straight phi=0.3), and when alumina particles/added ammonium polyelectrolyte were of equal charge, a maximum in the absolute value of zeta potential resulted. Due to adsorption all the anionic polyelectrolytes studied provided electrosteric stabilization of the alpha-Al(2)O(3), and Y(2)O(3)-doped ZrO(2) suspensions by enhancing the zeta potential to 40 mV or over and by shifting the isoelectric point to lower pH, the low-molecular-weight polyelectrolytes decreasing the isoelectric point more than the polyelectrolytes having higher molecular weight. The polyelectrolytes studied failed to stabilize pure monoclinic ZrO(2) particles. Due to the shortness of the chain of polyelectrolytes studied, no bridging was observed between oppositely charged polyelectrolyte/alumina particles. Copyright 2000 Academic Press.  相似文献   

12.
The colloidal stability of suspensions of alumina particles has been investigated by measuring particle size distribution, sedimentation, viscosity, and zeta potential. Alumina particles were found to be optimally dispersed at pH around 3 to 7.8 without dispersant and at pH 8.5 and beyond with dispersant. The above results corroborate zeta potential and viscosity measurement data well. The surface charge of alumina powder changed significantly with anionic polyelectrolyte (ammonium polycarboxylate, APC) and the iep shifted toward more acidic range under different dispersant conditions. It was found that the essential role played by pH and dispersant (APC) on the charge generation and shift in the isoelectric point of alumina manifests two features: (i) the stability decreases on approaching the isoelectric point from either side of pH, and (ii) the maximum instability was found at pH 9.1 for alumina only and at pH 6.8 for alumina/APC, which is close to the isoelectric points for both the system, respectively. Using the model based on the electrical double-layer theory of surfactant adsorption through shift in isoelectric points, the authors could estimate the specific free energy of interaction (7.501 kcal/mol) between particles and dispersant. The interaction energy, zeta potential, sedimentation, and viscosity results, were used to explain the colloidal stability of the suspension.  相似文献   

13.
Adsorption of surfactants and polymers at solid-liquid interfaces is used widely to modify interfacial properties in a variety of industrial processes such as flotation, ceramic processing, flocculation/dispersion, personal care product formulation and enhanced oil recovery. The behavior of surfactants and polymers at interfaces is determined by a number of forces, including electrostatic attraction, covalent bonding, hydrogen bonding, hydrophobic bonding, and solvation and desolvation of various species. The extent and type of the forces involved varies depending on the adsorbate and the adsorbent, and also the composition and other characteristics of the solvent and dissolved components in it. The influence of such forces on the adsorption behavior is reviewed here from a thermodynamics point of view. The experimental results from microcalorimetric and spectroscopic studies of adsorbed layers of different surfactant and polymer systems at solid-liquid interfaces are also presented. Calorimetric data from the adsorption of an anionic surfactant, sodium octylbenzenesulfonate, and a non-ionic surfactant, dodecyloxyheptaethoxyethylalcohol, and their mixtures on alumina, yielded important thermodynamic information. It was found that the adsorption of anionic surfactants alone on alumina was initially highly exothermic due to the electrostatic interaction with the substrate. Further adsorption leading to a solloid (hemimicelle) formation is proposed to be mainly an entropy-driven process. The entropy effect was found to be more pronounced for the adsorption of anionic-non-ionic surfactant mixtures than for the anionic surfactant alone. Fluorescence studies using a pyrene probe on an adsorbed surfactant and polymer layers, along with electron spin resonance (ESR) spectroscopy, reveal the role of surface aggregation and the conformation of the adsorbed molecules in controlling the dispersion and wettability of the system.  相似文献   

14.
The adsorption of poly(ethylene glycol) (PEG) and ammonium poly(methacrylate) (APMA) onto alumina has been examined both individually and in combination. The adsorption density of APMA was found to be higher than that of PEG onto alumina. The adsorption isotherms of PEG and APMA for alumina exhibited a Langmuirian behavior. The adsorption density of PEG was significantly reduced in the presence of APMA, but the reverse was not true. About 60% desorption of PEG from alumina was achieved, while in the case of APMA the amount desorbed was only 10% in the pH range of 3-6. The zeta potential values of alumina were decreased and the isoelectric point (i.e.p.) values were shifted toward acidic pH values, proportional to the concentration of APMA added. However, such changes in the electrokinetic behavior were not observed by the addition of PEG. The dispersion behavior of alumina in the combined presence of PEG and APMA essentially followed the trends obtained for the alumina-APMA system, corroborating the electrokinetic measurements. Coprecipitation tests confirmed complexation between aluminum species and APMA in the bulk solution, but not with PEG. The interaction between alumina and PEG is primarily governed by hydrogen-bonding forces, while both hydrogen bonding and chemical interaction are involved in the case of the alumina-APMA system. FTIR spectroscopic studies provided evidence in support of the interaction mechanisms proposed.  相似文献   

15.
Polyvinyl alcohol (PVA) and polyacrilic acid (PAA) were used as hydrophobic adsorbent surfaces at 25°C for two nonionic surfactants, namely, tetradecyl polyoxyethylenated monolaurate [La(EO)14] and tetradecyl polyoxyethylenated monooleate [Ol(EO)14], and two anionic surfactants, namely, sodium oleic sulfonate [OlSO3Na] and sodium dodecyl benzene sulfonate [SDBS]. Surface tension measurements were performed to determine the critical micelle concentration (CMC) and the adsorption isotherms of the tested surfactants. All the tested surfactants display L-shape isotherms except that of OlSO3Na onto PVA. No adsorption behavior has been shown for the anionic SDBS onto both PVA and PAA. The adsorption data show higher adsorption affinity for all the tested nonionic surfactants onto PAA than onto PVA while the investigated anionic surfactant OlSO3Na possesses close values of Γmax. The study reveals that the nature of the polymer surface as adsorbent besides the molecular structure of the surfactant defined the types and mechanisms of adsorption.  相似文献   

16.
以造纸黑液中的碱木质素为主要原料,通过磺化和缩聚反应制备了磺化木质素高分子聚合物SBAL.TEM和1H-NMR测试结果表明SBAL是以木质素的疏水骨架为中心,以磺酸基和羧基组成亲水性侧链的球形结构.GPC测试结果表明其重均分子量达到了24880 Da,是碱木质素的7.38倍,电位滴定测试结果表明,其磺化度达到2.70 mmol.g-1.通过流变曲线、吸附等温线、zeta电位、XPS测试研究了其对氧化铝在水中的分散机理及其吸附特性.掺SBAL的氧化铝浆体,在pH=3~12范围内SBAL对其具有良好的分散降黏作用.溶液pH对SBAL的分子构型和吸附特性有较大的影响,随pH增加,SBAL中磺酸基、羧基和酚羟基逐渐电离,分子的伸展程度逐渐增大.随pH增加,SBAL在氧化铝上的吸附质量减少,吸附层由致密逐渐变得疏松,pH小于等电点时以静电吸附为主,pH大于等电点时以非静电的特性吸附为主.当SBAL的用量小于临界值(0.5 wt%)时,其在氧化铝表面形成单分子层吸附,在颗粒间起到静电排斥作用;当用量大于临界值时,其在颗粒表面形成聚集体吸附而起到空间位阻作用.  相似文献   

17.
Phosphate adsorption on hematite was characterized as a function of pH (3.5-8.9) and phosphate concentration (5-500 microM) by in situ ATR-FTIR spectroscopy. Under most conditions a mixture of different (inner-sphere) phosphate complexes existed at the hematite surface, with the relative importance of these complexes varying with pH and surface coverage. Experiments using D(2)O and H(2)O indicated the presence of two protonated phosphate surface complexes at pH/pD=3.5-7.0. Comparison to spectra of protonated aqueous phosphate species suggested that these surface complexes are monoprotonated. The difference in the IR spectra of these complexes is tentatively interpreted to result from a different surface coordination, with one surface complex coordinated in a monodentate binuclear (bridging) fashion, and the second as a monodentate mononuclear complex. Alternatively, the bridging complex may be a (protonated) monodentate mononuclear complex exhibiting strong hydrogen bonding to an adjacent surface site, and the second species a monodentate complex exhibiting limited hydrogen bonding. Formation of the bridging complex is favored at lower pH values and higher surface loadings in the 3.5-7.0 pH range. At the highest pH values studied (8.5-9.0) a third complex, interpreted to be a nonprotonated monodentate mononuclear complex, is present along with the monodentate monoprotonated surface species. The importance of the nonprotonated monodentate complex increases with increasing surface coverage at these high pH values.  相似文献   

18.
The coagulation rate constant of submicron silica has been measured as a function of solution pH, salt concentration and hydroxypropyl cellulose (HPC) polymer concentration. Results show that the colloidal stability of silica is dominated by the cation concentration in the presence of salt in the pH range 3–9.5. The stability increases as cation concentration decreases. At low salt concentration and a minimum colloid stability was found in the intermediate pH range 4–8. These results show that differences in the literature values of the critical coagulation constant by relative light-scattering experiments can be explained by the use of the coagulation rate constant analysis. When HPC polymer was present in the solution, the colloid stability of the silica increased. The adsorption of polymer stabilizes the silica suspensions, both at low pH near the isoelectric point and at high ionic strength where it coagulates without the polymer. A monolayer coverage was necessary to provide steric stabilization. At 10–3 M KCl a smaller equilibrium concentration of HPC in solution is needed to give monolayer coverage and steric stabilization than at 1 M KCl and pH 4.2.  相似文献   

19.
Adsorption of inositol hexaphosphate (IP(6)) on goethite has been studied as a function of pH and concentration, and by use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). While adsorption was highest at low pH, a significant amount remained adsorbed above pH 10 where, in the absence of IP(6), the surface is expected to have a net negative charge. The adsorption isotherm at pH 5.5 indicated strong binding to the surface with each adsorbed species occupying about 2.5 nm(2). ATR-FTIR spectra of IP(6) solutions in the pH range from 2 to 12 were fitted with a single set of IR bands which were assigned primarily by analogy with phosphate spectra. From its variation in intensity with pH the band at 1040 cm(-1) was assigned to the effect of hydrogen bonding on the PO vibration. No additional bands were required to fit the spectra of IP(6) adsorbed to goethite, indicating that adsorption occurs by outer-sphere complexation in this system. At all pH values studied the band associated with hydrogen bonding was more intense for the adsorbed species than in solution at the corresponding pH indicating that hydrogen bonding plays an important role in binding IP(6) to goethite.  相似文献   

20.
(S)-Cysteine has been deposited on a Cu110 surface from sublimation of a crystalline phase. The surface was characterized by Fourier transform reflection absorption infrared spectroscopy (FT-RAIRS) during exposure and compared to the same copper surface after immersion into cysteine solutions at various pH values. X-ray photoelectron spectroscopy (XPS) measurements provided a chemical characterization of the surface at certain stages. The combination of these two techniques highlighted the importance of the cysteine "source" for the adsorbed form of the molecules and the mode of interaction. The zwitterionic amino acid was found to be predominant after adsorption at pH values close to the isoelectric point (IEP) of the molecule but also when the layer was formed in the vapor phase. This state was very sensitive to the atmosphere, contained an excess of hydroxyls, and/or underwent reduction into the anionic form when in contact with water or air. Weakly bound cysteine or cystine molecules, formed in the adsorbed phase, were considered to explain the average thickness of the adsorbed layer that was close to 20 A. As expected, immersion in very acidic or very basic solutions led to cationic and anionic forms, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号