首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical properties of electrodes on the basis of CH900-20 activated carbon (AC) cloth were studied in concentrated H2SO4 solutions in a wide range of potentials from −0.8 to +1 V RHE. Cyclic voltammetric curves measured in two ranges of potentials were analyzed: in the reversibility range (from 0.1 to 0.9 V) and in the deep cathodic charging range (from −0.8 to 1 V). Electric double layer (EDL) charging occurs in the reversibility range, while faradaic processes of hydrogen chemisorption and its intercalation into carbon take place in the range of negative potentials (<−0.1 V). The intercalation process is controlled by slow solid-phase hydrogen diffusion. For the first time, the maximum value of specific discharge capacity of 1560 C/g was obtained, which is much higher than the values known from the literature for carbon electrodes. On the basis of this value and Faraday’s law, it was assumed that the compound of C6H is formed in the limiting case of AC deep cathodic charging. The specific charge value grows at an increase in the concentration of H2SO4. The mechanism of double intercalation of sulfuric acid and hydrogen into the AC is suggested. The data obtained are used to develop a mathematical charging-discharge model for an AC electrode taking into account the EDL charging, chemisorption, and hydrogen intercalation.  相似文献   

2.
Ruthenium deposition onto platinized Pt electrode in 0.5 M H2SO4 solution is investigated. The I–V profiles of the Pt electrode covered with Ru depend on the potential of Ru deposition. This phenomenon is explained by the increasing degree of oxidation of the Ru layers deposited at higher potentials. Oxidation of Ru deposited at low potentials begins with comparatively slow processes. A mechanism for Ru deposition via ionization of hydrogen adsorbed on platinized Pt electrode is proposed.  相似文献   

3.
Electrophysical and photoelectrochemical characteristics of Fe2O3 photoelectrodes containing various quantities of tantalum are studied. The activation energy for the mobility of charge carriers is determined. An equivalent circuit for the electrochemical cell is constructed by analyzing frequency dependences of real and imaginary components of impedance spectra at different electrode potentials. Parameters of the equivalent circuit elements are calculated and the limiting stage of the electrode process is determined. A photoelectrochemical cell with a system of illuminated n-Fe2O3 : Ta– p-Cu2O photoelectrodes is also studied.  相似文献   

4.
The adsorption of urea on a polycrystalline copper electrode from 0.01 M NaClO4 solution has been studied by impedance spectroscopy and radiometric method. The dependence of the surface concentration of urea on the electrode potential and the bulk concentration was determined. From radiometric data, it follows that the adsorption of urea on the copper electrode takes place in the entire range of studied potentials where no faradaic processes occur. In this range, the process of adsorption is practically reversible with respect to the potential and the bulk concentration of urea. The experimental data were described by the Langmuir and the virial isotherms and the Gibbs energy of adsorption were calculated. The data of the urea adsorption on different electrodes have been compared and the role of the kind of the metal on the adsorption process was discussed.  相似文献   

5.
The admittance of the process which is under activation control, is analysed in stationary conditions for the case of coupling in parallel with an additional electrochemical adsorption reaction which influences the electrode activity for the main process.The whole system has two time constants. As its equivalent circuit, a two-time constant electrical RC circuit of a particular structure is proposed; this structure consists of two subcircuits coupled in parallel.The use of a multi-time constant RC equivalent circuit for a faradaic process results in most cases in an ambiguous interpretation of the process, since the majority of structures of such circuits have multiple solutions. The choice of the correct interpretation needs reference to arguments outside the scope of ac measurements.It is indicated that the above ambiguity does not appear if one relinquishes the use of equivalent circuits in the modelling of complex faradaic systems.  相似文献   

6.
We show that electrochemically inactive molecules of polysaccharide (PS), if carrying sulphated groups (e.g. ι-carrageenan and dextran sulphate) produce in buffered solutions two well-developed chronopotentiometric peaks HPS and HPS (due to catalytic hydrogen evolution) at hanging mercury drop electrode. Peak HPS of ι-carrageenan displayed a striking increase at negative accumulation potentials, which was tentatively explained by uncoiling the PS double-helical structure at these potentials. Nanomolar concentrations of ι-carrageenan can be determined at moderate accumulation times.  相似文献   

7.
AC voltammetry of polycrystalline Pt in sulfuric acid solutions has been used to study the growth kinetics of the thin anodic Pt oxide film. Data were collected from 2 Hz to 50 kHz, one frequency per cycle, and were analyzed in the complex impedance plane. The faradaic process was modeled as a resistance parallel to the double-layer impedance, with a value approximately independent of potential in the do voltammetry plateau region. The equivalent circuit for the known growth law is derived and is shown to be a series RC combination. The capacitance was not detected but is expected to have a negligible effect in the measured frequency range. The value of the resistance found was consistent with the growth law found in other experiments. Evidence for additional faradaic elements in the equivalent circuit was inconclusive. We found no additional features in the impedance spectra at higher frequencies that could be associated with the fast electrosorption of OH suggested by other workers. The reversibility of the early stages of growth is therefore associated with structural reversibility rather than a fast process.  相似文献   

8.
9.
Intercalation of lithium from an LiClO4 propylene carbonate solution into thin-film TiO2 (rutile) electrodes produced by thermal oxidation of a titanium substrate are studied using cyclic voltammetry and impedance measurements at 0.01 to 105 Hz. An equivalent circuit adequately modeling the impedance spectra of TiO2- and Li x TiO2 electrodes throughout the frequency range studied is proposed. The electrochemical characteristics of film electrodes, the reversibility of intercalation-deintercalation process, the effect of surface passivation on the lithium transfer rate, and the dependence of electric, kinetic, and diffusion parameters on the electrode potential (composition) are discussed. The diffusion coefficient of lithium in Li x TiO2 is 10–12 cm2/s, as estimated by the impedance method.  相似文献   

10.
New dinuclear ruthenium manganese complexes of general composition (bpy)2Ru(L)MnClx(H2O)2 (L is 1,10-phenanthroline-5,6-dione, 3,3′-dicarboxy-2,2′-bipyridyl, or bis(pyrazolyl); x = 2 or 4) were synthesized by the reaction of (bpy)2Ru(L) with MnCl2 · 4H2O. These compounds and the starting mononuclear ruthenium complexes were studied by spectrophotometric and electrochemical methods in MeCN. The position of the charge-transfer band RuII → L in the spectra depends on the donor-acceptor characteristics of the ligand L. For the dinuclear complex under study, the formal potentials of reversible one-electron oxidation of RuII are in the range of 0.9–1.2 V (vs. the standard hydrogen electrode), whereas oxidation of MnII occurs at more positive (by 0.1–0.2 V) potentials. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2281–2285, October, 2005.  相似文献   

11.
Adsorption of iodide ions at the Bi(111) and Cd(0001) electrodes from the aqueous solutions with constant ionic strength 0.1x M KI + 0.1(1−x) M KF and 0.1x M KI + 0.033(1−x) M K2SO4 has been studied by impedance spectroscopy. It was found that, to a first approximation, the classical Frumkin–Melik–Gaikazyan equivalent circuit with the slow diffusion-like and adsorption steps can be applied for fitting the experimental impedance data for iodide ions adsorption on Bi(111) and Cd(0001) from aqueous solutions with constant ionic strength. The modified Grafov–Damaskin circuit can be used in the region of electrode potentials, where parallel faradic processes (electroreduction of protons, oxygen traces) are probable. The more complicated Ershler equivalent circuit, taking into account the slow diffusion-like, adsorption and charge transfer steps, is not applicable for characterization of the adsorption process of I at Bi(111) and Cd(0001) electrodes.  相似文献   

12.
The negative low-frequency capacitance that appears in interpretations of impedance of the iron electrode in weakly acidic solutions is shown to arise in the case of interaction of two consecutive nonequilibrium flows that constitute a two-stage anodic faradaic process of intermediate adsorption in the prepassivation potential range. The low-frequency capacitance is negative throughout a potential range where the logarithm of rate constant vs. potential (logk vs. E) dependence has the higher slope for the limiting stage. The low-frequency capacitance becomes positive at higher anodic potentials and for the other limiting stage.  相似文献   

13.
Model approximations are developed that allow establishing a quantitative relationship between the geometrical parameters of a spherical electrode, the faradaic impedance, and instabilities of the electrochemical system for an electrode reaction under potentiostatic conditions for the adsorption of species preceding their discharge. It is shown that the control parameter ωH in the Hopf bifurcation point depends on the electrode size. The effect of the Nernst diffusion layer is observed at low frequencies in the range of negative faradaic impedance values.  相似文献   

14.
The anodic process on the hydrogen electrode in eutectic melt (Li, K)2CO3 is studied at 923 K by the coulostatic method. The experiment is performed at a relatively high electrode charge which makes its potential deviate from equilibrium by up to 50–100 mV. The relaxation dependence η vs.t is analyzed theoretically within the Ang-Sammels reaction scheme taking into consideration the charge-transfer and adsorption steps. Exchange currents (fluxes) of corresponding processes and the Au, Pt, Ni, and Pd electrode coverages with hydrogen adatoms are estimated. The adsorption step is shown to significantly contribute to the polarization resistance on the hydrogen electrode in a carbonate melt. This should be taken into account when estimating exchange currents of the charge-transfer step by the coulostatic method.  相似文献   

15.
This work demonstrates the performance of a bio‐inspired iron/sulfur/graphene nanocomposite as a non‐platinum electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The catalyst shows the most positive ORR onset potential (1.1 V vs. RHE) according to its unique structure in the alkaline medium (KOH solution, pH = 13) at low temperature (T = 298 K). The catalyst is evaluated by the rotating‐disk electrode (RDE) method under various rotating speeds (0–2,000 rpm) in the potential range ?0.02–1.18 V vs. a rechargeable hydrogen electrode (RHE). The number of transferred electrons, as one of the most important parameters, is almost constant over a wide range of potentials (0.1–0.8 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the FePc‐S‐Gr surface. The mean size of catalyst centers are in the nanoscale (<10 nm). The estimated Tafel slope in the appropriate range is about ?110 mV per decade at low current density, and E1/2 of FePc‐S‐Gr displays a negative shift of only 7.1 mV after 10,000 cycles.  相似文献   

16.
《Electroanalysis》2004,16(19):1622-1627
The pH‐dependence of the stationary open‐circuit potential Ei=0st of rhodium electrode with a surface layer of anodically formed insoluble compounds has been studied in sulfate and phosphate solutions by means of cyclic voltammetry and chronopotentiometry. The range of potentials of the investigations performed has been confined to the region of rhodium electrochemical oxidation/reduction, i.e., 0.2<E<1.2 V (RHE) in order to prevent any possible interference of other reactions such as H2 and O2 evolution. It has been shown that rhodium electrode with a layer of surface compounds formed anodically at E<<1.23 V (RHE) behaves like a reversible metal‐oxide electrode within the range of pH values from ca. 1.0 to ca. 8.0. It has been presumed that the stationary potential of such electrode is determined by the equilibrium of the following electrochemical reaction: Rh+3H2O??Rh(OH)3+3H++3e?. The pH‐dependence of the reversible potential of Eequation/tex2gif-inf-6.gif electrode has been found to be: Eequation/tex2gif-inf-8.gif=Ei=0st=0.69?0.059 pH, V. In acid solutions (pH<2.0) rhodium hydroxide dissolves into the electrolyte, therefore, to reach equilibrium, the solution must be saturated with Rh(OH)3. This has been achieved by adding Rh3+ ions in the form of Rh2(SO4)3. The solubility product of Rh(OH)3, estimated from the experimental Eequation/tex2gif-inf-16.gif?pH dependence obtained, is ca. 1.0×10?48, which is close to the value given in literature.  相似文献   

17.
Electrochemical behavior of electrodes on the basis of CH900-20 activated carbon (AC) cloth has been studied in concentrated sulfuric acid solution. Cyclic voltammetric curves have been studied in the reversibility range (from 0.1 to 0.9 V RHE) and in the deep cathodic charging potential range (from –0.8 to 1 V RHE). It has been shown that electric double layer (EDL) charging occurs in the reversibility range, while faradaic processes of hydrogen intercalation into AC carbon take place in the range of negative potentials (←0.1 V). The intercalation process is governed by slow solid-phase hydrogen diffusion. The specific charge value grows at an increase in concentrated sulfuric acid solution. The mechanism of double intercalation of sulfuric acid and hydrogen into the AC material is suggested. On the basis of the reached specific discharge capacitance of 1,560 C/g (or 1,110 F/g) and Faraday's law, it has been concluded that the compound of C6H is formed in the limiting case of deepest cathodic charging. The obtained data have been used in a mathematical charge–discharge model for an AC electrode taking into account the EDL charging and the hydrogen intercalation. The galvanostatic recharge curves have been calculated in the diapason of currents by the developed model.  相似文献   

18.
Summary 1. The furanoquinoline alkaloids skimmianine, haploperine, and -fagarine are reduced at a dropping mercury electrode in 0.1 N (C2H5)4NI and (C2H5)4NOH in 80% ethanol forming tetrahydro or hexahydro derivatives according to the potential of the electrode.2. Carbostyryl and N-methylcarbostyryl are reduced under the same conditions to the corresponding dihydro derivatives.3. The proposed mechanism for the electrode processes is confirmed by a comparison of the UV and IR spectra of the substances before and after their electrolysis at a controlled potential with the spectra of synthetic compounds.Khimiya Prirodnykh Soedinenii, Vol. 3, No. 4, pp. 253–257, 1967  相似文献   

19.
荣联清  张志凌  林毅  谢娅妮  庞代文 《分析化学》2006,34(12):1683-1687
用魔芋多糖(KGM)和N,N-二甲基甲酰胺(DMF)的加合物,将肌红蛋白(Mb)固定在玻碳电极(GCE)上,制备了稳定的Mb-KGM-DMF/GCE修饰电极,并研究了Mb在修饰电极上的直接电化学行为和电催化性能。该电极在pH=7.0的磷酸盐缓冲溶液(PBS)中,-0.38 V(E0′)处有一对氧化还原峰,峰电位差ΔEp=70 mV,该峰正是Mb中血红素辅基FeⅢ/FeⅡ电对的氧化还原特征峰。在0.2~9.0 V/s扫速的范围内,氧化还原峰峰电流大小和扫描速率成正比,呈现出表面控制行为。在pH为5.0~12.0的范围内,式电位和pH值呈线性关系,表明电子传递过程伴随着质子转移。同时,Mb-KGM-DMF/GCE修饰电极表现出良好的电催化性能,对氧、H2O2有显著的催化作用。在4.70~75.0μmol/L的范围内,其催化峰电流大小与H2O2的浓度有良好的线性关系,其线性回归方程i=0.127 0.093C,r=0.9989,表观米氏常数为80.8μmol/L。  相似文献   

20.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号